版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q2.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.73.已知集合,,则=()A. B. C. D.4.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.85.已知,满足约束条件,则的最大值为A. B. C. D.6.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或47.设全集U=R,集合,则()A. B. C. D.8.已知数列中,,(),则等于()A. B. C. D.29.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.10.已知复数满足(其中为的共轭复数),则的值为()A.1 B.2 C. D.11.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种12.已知锐角满足则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.记等差数列和的前项和分别为和,若,则______.14.的展开式中,的系数为_______(用数字作答).15.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.16.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表1:B设备生产的样本频数分布表质量指标值频数2184814162(1)请估计A.B设备生产的产品质量指标的平均值;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?18.(12分)已知函数,函数在点处的切线斜率为0.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.19.(12分)已知函数.(1)讨论的单调性并指出相应单调区间;(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.20.(12分)[选修4-5:不等式选讲]设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.21.(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.22.(10分)已知a>0,证明:1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C2、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.3、C【解析】
计算,,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,意在考查学生的计算能力.4、A【解析】
由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5、D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.6、C【解析】
对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.7、A【解析】
求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【详解】,,则,故选:A.【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.8、A【解析】
分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:∵,(),
,
,
,
,
…,
∴数列是以3为周期的周期数列,
,
,
故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.9、A【解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.10、D【解析】
按照复数的运算法则先求出,再写出,进而求出.【详解】,,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.11、B【解析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.12、C【解析】
利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
结合等差数列的前项和公式,可得,求解即可.【详解】由题意,,,因为,所以.故答案为:.【点睛】本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.14、60【解析】
根据二项式定理展开式通项,即可求得的系数.【详解】因为,所以,则所求项的系数为.故答案为:60【点睛】本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题.15、【解析】
不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍,,,,故答案为.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.16、【解析】
依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【详解】解:依题意可得、、、四点共圆,所以因为,所以,,所以三角形为正三角形,则,,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,,且面面,面所以面,所以外接球的半径所以故答案为:【点睛】本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)30.2,29;(2)B设备【解析】
(1)平均数的估计值为组中值与频率乘积的和;(2)要注意指标值落在内的产品才视为合格品,列出A、B设备利润分布列,算出期望即可作出决策.【详解】(1)A设备生产的样本的频数分布表如下质量指标值频数41640121810.根据样本质量指标平均值估计A设备生产一件产品质量指标平均值为30.2.B设备生产的样本的频数分布表如下质量指标值频数2184814162根据样本质量指标平均值估计B设备生产一件产品质量指标平均值为29.(2)A设备生产一件产品的利润记为X,B设备生产一件产品的利润记为Y,X240180120PY240180120P若以生产一件产品的利润作为决策依据,企业应加大B设备的生产规模.【点睛】本题考查平均数的估计值、离散随机变量的期望,并利用期望作决策,是一个概率与统计综合题,本题是一道中档题.18、(1),单调性见解析;(2)不存在,理由见解析【解析】
(1)由题意得,即可得;求出函数的导数,再根据、、、分类讨论,分别求出、的解集即可得解;(2)假设满足条件的、存在,不妨设,且,由题意得可得,令(),构造函数(),求导后证明即可得解.【详解】(1)由题可得函数的定义域为且,由,整理得..(ⅰ)当时,易知,,时.故在上单调递增,在上单调递减.(ⅱ)当时,令,解得或,则①当,即时,在上恒成立,则在上递增.②当,即时,当时,;当时,.所以在上单调递增,单调递减,单调递增.③当,即时,当时,;当时,.所以在上单调递增,单调递减,单调递增.综上,当时,在上单调递增,在单调递减.当时,在及上单调递增;在上单调递减.当时,在上递增.当时,在及上单调递增;在上递减.(2)满足条件的、不存在,理由如下:假设满足条件的、存在,不妨设,且,则,又,由题可知,整理可得:,令(),构造函数().则,所以在上单调递增,从而,所以方程无解,即无解.综上,满足条件的A、B不存在.【点睛】本题考查了导数的应用,考查了计算能力和转化化归思想,属于中档题.19、(1)答案见解析(2)【解析】
(1)先对函数进行求导得,对分成和两种情况讨论,从而得到相应的单调区间;(2)对函数求导得,从而有,,,三个方程中利用得到.将不等式的左边转化成关于的函数,再构造新函数利用导数研究函数的最小值,从而得到的取值范围.【详解】解:(1)由,,则,当时,则,故在上单调递减;当时,令,所以在上单调递减,在上单调递增.综上所述:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)∵,,由得,∴,,∴∵∴解得.∴.设,则,∴在上单调递减;当时,.∴,即所求的取值范围为.【点睛】本题考查利用导数研究函数的单调性、最值,考查分类讨论思想和数形结合思想,求解双元问题的常用思路是:通过换元或消元,将双元问题转化为单元问题,然后利用导数研究单变量函数的性质.20、(1)(2)【解析】
(1)零点分段去绝对值解不等式即可(2)由题在上有解,去绝对值分离变量a即可.【详解】(1)不等式,即等价于或或解得,所以原不等式的解集为;(2)当时,不等式,即,所以在上有解即在上有解,所以,.【点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.21、(1),;(2)见解析.【解析】
(1)将曲线的极坐标方程变形为,再由可将曲线的极坐标方程化为直角坐标方程,将直线的方程与曲线的方程联立,求出点、的坐标,即可得出线段的中点的坐标;(2)求得,写出直线的参数方程,将直线的参数方程与曲线的普通方程联立,利用韦达定理求得的值,进而可得出结论.【详解】(1)曲线的极坐标方程可化为,即,将代入曲线的方程得,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民用建筑通风工程合同
- 垃圾运输劳务合同模板
- 2024年巴彦淖尔客运从业资格证考试模板
- 抖音投放合同模板
- 正规众筹合同范例
- 大小周合同模板
- 2024年吉林客运资格证考试实际操作试题
- 店铺转包合同范例
- 个人藏品交易合同模板
- 文化经纪合同委托合同范例
- (完整)污水处理厂施工组织设计
- 幼儿园美术课件 《动物玩偶》课件
- 五金价格报价表参考
- 移动式操作平台施工方案
- 高一物理《受力分析》 完整版课件PPT
- 《经济法》课程教学大纲英文版
- 2023年最新的申请政协委员简历 3篇
- 工业滑升门安装及施工方案
- 旅行社计调业务套课件幻灯片完整版ppt教学教程最全电子讲义(最新)
- 小学语文《四季》课件
- 污水处理工程监理大纲(附多图)
评论
0/150
提交评论