版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为()A. B.C. D.2.已知函数,若恒成立,则满足条件的的个数为()A.0 B.1 C.2 D.33.若的展开式中的系数为150,则()A.20 B.15 C.10 D.254.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.25.在中,为上异于,的任一点,为的中点,若,则等于()A. B. C. D.6.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②7.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.8.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A. B. C. D.9.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或10.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为()A. B. C. D.11.“”是“直线与互相平行”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件12.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.0二、填空题:本题共4小题,每小题5分,共20分。13.若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有___________.(填上所有正确答案的序号)①,,;②,,;③,,;④,,.14.已知盒中有2个红球,2个黄球,且每种颜色的两个球均按,编号,现从中摸出2个球(除颜色与编号外球没有区别),则恰好同时包含字母,的概率为________.15.若函数与函数,在公共点处有共同的切线,则实数的值为______.16.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.18.(12分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.19.(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.20.(12分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.21.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α122.(10分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【详解】因为,所以是偶函数,排除C和D.当时,,,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【点睛】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.2、C【解析】
由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.【详解】①当时,,满足题意,②当时,,,,,故不恒成立,③当时,设,,令,得,,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合①②③得:满足条件的的个数是2个,故选:.【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.3、C【解析】
通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.4、B【解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.5、A【解析】
根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,,,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.6、C【解析】
①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.7、B【解析】
变形为,由得,转化在中,利用三点共线可得.【详解】解:依题:,又三点共线,,解得.故选:.【点睛】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)8、C【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.9、C【解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.10、D【解析】
先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,,所以函数在时单调递减,由选项知,,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.11、A【解析】
利用两条直线互相平行的条件进行判定【详解】当时,直线方程为与,可得两直线平行;若直线与互相平行,则,解得,,则“”是“直线与互相平行”的充分不必要条件,故选【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题.12、C【解析】
由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.【详解】由三视图还原原几何体如图,其中,,为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.故选:C.【点睛】本小题主要考查由三视图还原为原图,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】
由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对①,③,④都可以采用此法判断,对②分析式子特点可知,,进而判断【详解】①时,令,则,单调递增,,即.令,则,单调递减,,即,因此,满足题意.②时,易知,满足题意.③注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为,易知,,因此不存在直线满足题意.④时,注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:①②④【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题14、【解析】
根据组合数得出所有情况数及两个球颜色不相同的情况数,让两个球颜色不相同的情况数除以总情况数即为所求的概率.【详解】从袋中任意地同时摸出两个球共种情况,其中有种情况是两个球颜色不相同;故其概率是故答案为:.【点睛】本题主要考查了求事件概率,解题关键是掌握概率的基础知识和组合数计算公式,考查了分析能力和计算能力,属于基础题.15、【解析】
函数的定义域为,求出导函数,利用曲线与曲线公共点为由于在公共点处有共同的切线,解得,,联立解得的值.【详解】解:函数的定义域为,,,设曲线与曲线公共点为,由于在公共点处有共同的切线,∴,解得,.由,可得.联立,解得.故答案为:.【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.16、;【解析】
求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可.【详解】由,得,,,,∵,∴,解得.故答案为:.【点睛】本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)证明见解析【解析】
(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,得,参变分离得,分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.【详解】(1)依题意,当时,,①当时,恒成立,此时在定义域上单调递增;②当时,若,;若,;故此时的单调递增区间为,单调递减区间为.(2)方法1:由得令,则,依题意有,即,要证,只需证(不妨设),即证,令,设,则,在单调递减,即,从而有.方法2:由得令,则,当时,时,故在上单调递增,在上单调递减,不妨设,则,要证,只需证,易知,故只需证,即证令,(),则==,(也可代入后再求导)在上单调递减,,故对于时,总有.由此得【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.18、(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立时,的取值范围;(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.【详解】(1)由题意得,则,当函数在区间上单调递增时,在区间上恒成立.∴(其中),解得.当函数在区间上单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.∴在区间内存在零点,同理在区间内存在零点.∴在区间内恰有两个零点.由(1)易知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,∴.令,得,∴函数在区间上单凋递减,在区间上单调递增.记的两个零点为,∴,必有.由,得.∴又∵,∴.综上所述,实数的取值范围为.【点睛】本题考查导数的综合应用,涉及到函数的单调性、零点问题,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.19、(1),众数为150;(2);(3)【解析】
(1)由频率直方图分别求出各组距内的频率,由此能求出这个开学季内市场需求量的众数和平均数;(2)由已知条件推导出当时,,当时,,由此能将表示为的函数;(3)利用频率分布直方图能求出利润不少于4800元的概率.【详解】(1)由直方图可估计需求量的众数为150,由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:∴估计需求量的平均数为:(2)当时,当时,∴(3)由(2)知当时,当时,得∴开学季利润不少于4800元的需求量为由频率分布直方图可所求概率【点睛】本题考查频率分布直方图的应用,考查函数解析式的求法,考查概率的估计,是中档题,解题时要注意频率分布直方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临时用电规范培训
- 2024年度抖音平台内容安全保障合同
- 2024年度开发合同标的为手游游戏
- 2024年度企业级应用市场推广合同
- 2024年度版权质押合同质押标的及质权期限
- 2024年度旅游服务合同:奢华邮轮旅行定制
- 2024年度医疗机构医疗设备采购与维护合同
- 2024年度乙方独享优惠政策购物中心租约合同
- 2024年度房屋买卖合同纠纷调解协议
- 生产耗材转让合同范例
- 初一期中家长会课件
- 人教版小学三年级道德与法治上册《第四单元 家是最温暖的地方》大单元整体教学设计
- 39 《出师表》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 人教版五年级上册语文《期中》测试卷及完整答案
- 提高四级手术术前多学科讨论完成率实施方案
- 创新创业通论(第三版)课件 第十章 企业创立与管理
- 手术室常见不良事件及防范措施
- 环保公司风险分析及防范措施
- TSGD-压力管道安全技术监察规程-工业管道(高清晰版)
- 建筑公司简介课件模板-建筑工程公司简介模板
- 川芎茶调颗粒的安全性评价研究
评论
0/150
提交评论