




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§2-3Z反变换一、定义:已知X(z)及其收敛域求序列x(n)z变换公式:C为环形解析域内环绕原点的一条逆时针闭合单围线.c0即罗伦级数展开系数部分分式法(必须掌握)留数法(围线积分法)长除法二、求Z反变换的方法1、部分分式法(必须掌握)1)适合型的有理分式2)反变换的步骤:先将化为真分式,在对部分分式展开对各部分分式求z反变换:(可查P54表2-1)的z反变换。利用部分分式法求解:[例1(补充)][例2(补充)]X(z)与其收敛域共同唯一确定原序列,反变换的基本变化式是例3(书P56例2—7)必须注意:X(z)有多重极点情况:z1为m阶极点,z2为单极点则将部分分式展开为:...由留数定理可知:
为c内的第k个极点, 为c外的第m个极点,Res[]表示极点处的留数。2、留数法2、当Zr为l阶(多重)极点时的留数:留数的求法:1、当Zr为一阶极点时的留数:[书例2-5]解:1)当n≥-1时, 不会构成极点,所以这时C内只有一个一阶极点 因此,求z反变换。已知2)当n≤-2时,X(z)zn-1中的zn+1构成n+1阶极点。因此C内有极点:z=1/4(一阶),z=0为(n+1)阶极点;而在C外仅有z=4(一阶)这个极点:因为x(n)的Z变换为Z-1
的幂级数,即
所以在给定的收敛域内,把X(z)展为幂级数,其系数就是序列x(n)。如收敛域为|z|>Rx+,x(n)为因果序列,则X(z)展成Z的负幂级数。若收敛域|Z|<Rx-,x(n)必为左边序列,主要展成
Z的正幂级数。3、幂级数展开法(长除法)[例]试用长除法求
的z反变换。解:收敛域为环状,极点z=1/4对应因果序列,极点z=4对应左边序列(双边序列)*双边序列可分解为因果序列和左边序列。*应先展成部分分式再做除法。
4-Z)
4Z+Z+—Z+—Z+—Z+241311645164...16Z16Z-4Z24
Z4Z-ZZZ-—Z—Z—Z-—Z—Z
2233314141444411655116...
Z-—)Z141+—Z+—Z+—Z14-1116-2164-3...Z-—14—14—14-—Z116-1—Z116-1—Z116-1-—Z164-2—Z164-2—Z164-2-——Z1256-3——Z1256-3... §2-4Z变换的基本性质和定理线性和位移性序列指数加权(Z域尺度变换)序列线性加权(Z域微分)共轭序列和翻褶序列初值定理和终值定理有限项累加特性时域卷积和Z域卷积定理帕斯瓦尔定理参见P69表2-2(59-69页)(双边Z变换)如果 则有:*即满足均匀性与叠加性;*收敛域为两者重叠部分。1.线性解:[书p60例2-10]已知2.序列的移位如果 则有:[书例2-11]求序列x(n)=u(n)-u(n-3)的z变换。3.Z域尺度变换(乘以指数序列)如果,则证明:4.序列的线性加权(Z域求导数)如果,则证明:同理:5.共轭序列如果,则证明:6.翻褶序列如果,则证明:7.初值定理证明:8.终值定理证明:又由于只允许X(z)在z=1处可能有一阶极点,故因子(z-1)将抵消这一极点,因此(z-1)X(z)在上收敛。所以可取z1的极限。9.有限项累加特性证明:10.序列的卷积和(时域卷积定理)
(重要)证明:解:[书P-65例2-12]11.序列相乘(Z域卷积定理)其中,C是在变量V平面上,X(z/v),H(v)公共收敛域内环原点的一条逆时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育与科技的协同发展助力学生成长
- 在线直播教学中学生参与度的提升方法研究
- 中小学教辅材料征订管理制度
- 以创新驱动未来-智能型学习工具如教育机器人的发展策略研究
- 技术助力办公效率探讨使用在线教育平台的实践和成效
- 全球铀矿资源分布与核能产业产业链整合与风险研究报告
- 公交优先战略2025年城市交通拥堵治理的公共交通信息化建设报告
- Chitosan-Cy7-MW-10000-生命科学试剂-MCE
- 温州医科大学仁济学院《数字逻辑电路》2023-2024学年第一学期期末试卷
- 六盘水职业技术学院《BM技术应用》2023-2024学年第一学期期末试卷
- 2024中国城市道路交叉口效能报告
- 2024工业产品表面缺陷自动检测系统技术要求
- RB/T 177-2023温室气体审定与核查机构要求
- 广西南宁市第三十五中学2024-2025学年七年级上学期开学分班考试语文试题(原卷版)
- 自来水有限公司2023-2024年度小口径水表(新装)采购项目招标文件
- 生产与运作管理第5版配套教材电子课件(完整版)
- 成人鼻肠管的留置与维护(2021团体标准解读)-20221004172843
- 农产品区域公用品牌 辛集黄冠梨生产技术规程
- 2024-2025学年第一学期部编版语文八年级教学计划(含教学进度表)
- 2024-2030年中国割草机行业发展前景预测及投资战略研究报告
- 育苗室管理-细菌与真菌的防治方法(植物组织培养技术课件)
评论
0/150
提交评论