版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年濮阳石油化工职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知A(-4,6,-1),B(4,3,2),则下列各向量中是平面AOB(O是坐标原点)的一个法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:设平面AOB(O是坐标原点)的一个法向量是u=(x,y,z)则u•OA=0u•OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故选B.2.已知实数x,y满足3x+4y+10=0,那么x2+y2的最小值为______.答案:设P(x,y),则|OP|=x2+y2,即x2+y2的几何意义表示为直线3x+4y+10=0上的点P到原点的距离的最小值.则根据点到直线的距离公式得点P到直线3x+4y+10=0的距离d=|10|32+42=105=2.故为:2.3.利用计算机在区间(0,1)上产生两个随机数a和b,则方程有实根的概率为()
A.
B.
C.
D.1答案:A4.下列函数中,定义域为(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函数y=1x的定义域为(0,+∞),函数y=x的定义域为[0,+∞),函数y=1x2的定义域为{x|x≠0},函数y=12x的定义域为R,故只有A中的函数满足定义域为(0,+∞),故选A.5.直线3x+5y-1=0与4x+3y-5=0的交点是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C6.不论k为何实数,直线y=kx+1与曲线x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是______.答案:直线y=kx+1恒过(0,1)点,与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,即:a2+12
≤4+2a所以,-1≤a≤3故为:-1≤a≤3.7.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:
①“取出两只红球和一只白球”与“取出一只红球和两只白球”;
②“取出两只红球和一只白球”与“取出3只红球”;
③“取出3只红球”与“取出的3只球中至少有一只白球”;
④“取出3只红球”与“取出3只白球”.
其中是对立事件的有______(只填序号).答案:对于①“取出两只红球和一只白球”与“取出一只红球和两只白球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于②“取出两只红球和一只白球”与“取出3只红球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于③“取出3只红球”与“取出的3只球中至少有一只白球”,它们不可能同时发生,而且它们的并事件是必然事件,故它们是对立事件.④“取出3只红球”与“取出3只白球”.由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.故为③.8.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且
DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.答案:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=729.设直线l过点P(-3,3),且倾斜角为56π
(1)写出直线l的参数方程;
(2)设此直线与曲线C:x=2cosθy=4sinθ(θ为参数)交A、B两点,求|PA|•|PB|答案:(1)由于过点(a,b)倾斜角为α的直线的参数方程为
x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点P(-3,3),倾斜角α=5π6,故直线的参数方程是x=-3-32ty=3+12t(t是参数).…(5分)(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t1,则点A,B的坐标分别为A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直线L的参数方程代入椭圆的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因为t1和t2是方程①的解,从而t1t2=11613,由t的几何意义可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|•|PB|=11613.10.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.11.△ABC中,∠A外角的平分线与此三角形外接圆相交于P,求证:BP=CP.
答案:证明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.12.某校选修乒乓球课程的学生中,高一年级有40名,高二年级有50名,现用分层抽样的方法在这90名学生中抽取一个样本,已知在高一年级的学生中抽取了8名,则在高二年级的学生中应抽取的人数为______.答案:∵高一年级有40名学生,在高一年级的学生中抽取了8名,∴每个个体被抽到的概率是
840=15∵高二年级有50名学生,∴要抽取50×15=10名学生,故为:10.13.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知.x相同,.y也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点(.x,.y)D.无法判断l1和l2是否相交答案:∵两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,∴两组数据的样本中心点是(.x,.y)∵回归直线经过样本的中心点,∴l1和l2都过(.x,.y).故选C.14.已知a,b
,c满足a+2c=b,且a⊥c,|a|=1,|c|=2,则|b|=______.答案:根据题意,a⊥c?a?c=0,则|b|2=(a+2c)2=a2+4c2=17,则|b|=17;故为17.15.已知z=1+i,则|z|=______.答案:由z=1+i,所以|z|=12+12=2.故为2.16.化简的结果是()
A.aB.C.a2D.答案:B解析:分析:指数函数的性质17.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.18.在平面直角坐标系xOy中,双曲线x24-y212=1上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是______答案:MFd=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故为419.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C20.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),则向量2-3+4的坐标为()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A21.若则实数λ的值是()
A.
B.
C.
D.答案:D22.抛物线y=x2的焦点坐标是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C23.(坐标系与参数方程)
从极点O作直线与另一直线ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.
(1)求点P的轨迹方程;
(2)设R为直线ρcosθ=4上任意一点,试求RP的最小值.答案:(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即为所求的轨迹方程.(2)由(1)知P的轨迹是以(32,0)为圆心,半径为32的圆,而直线l的解析式为x=4,所以圆与x轴的交点坐标为(3,0),易得RP的最小值为124.直三棱柱ABC-A1B1C1
中,若CA=a,CB=b,CC1=c,则A1B=______.答案:向量加法的三角形法则,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故为:-a-c+b.25.设甲、乙两名射手各打了10发子弹,每发子弹击中环数如下:甲:10,7,7,10,8,9,9,10,5,10;
乙:8,7,9,10,9,8,8,9,8,9则甲、乙两名射手的射击技术评定情况是()
A.甲比乙好
B.乙比甲好
C.甲、乙一样好
D.难以确定答案:B26.复数,且A+B=0,则m的值是()
A.
B.
C.-
D.2答案:C27.分析如图的程序:若输入38,运行右边的程序后,得到的结果是
______.答案:根据程序语句,其意义为:输入一个x,使得9<x<100a=x\10
为去十位数b=xMOD10
去余数,即取个位数x=10*b+a
重新组合数字,用原来二位数的十位当个位,个位当十位否则说明输入有误故当输入38时输出83故为:8328.与原数据单位不一样的是()
A.众数
B.平均数
C.标准差
D.方差答案:D29.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥CD.∵∠ABC=90°,∴CD、CB为⊙O的两条切线.∴根据切线长定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故为16.30.直线l经过点A(2,-1)和点B(-1,5),其斜率为()
A.-2
B.2
C.-3
D.3答案:A31.已知图所示的矩形,其长为12,宽为5.在矩形内随同地措施1000颗黄豆,数得落在阴影部分的黄豆数为550颗.则可以估计出阴影部分的面积约为______.答案:∵矩形的长为12,宽为5,则S矩形=60∴S阴S矩=S阴60=5501000,∴S阴=33,故:33.32.如图,在平行四边形OABC中,点C(1,3).
(1)求OC所在直线的斜率;
(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.33.某市为抽查控制汽车尾气排放的执行情况,选择了抽取汽车车牌号的末位数字是6的汽车进行检查,这样的抽样方式是(
)
A.抽签法
B.简单随机抽样
C.分层抽样
D.系统抽样答案:D34.一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=______.(填算式)答案:若ξ=12,则取12次停止,第12次取出的是红球,前11次中有9次是红球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故为C911(38)10(58)235.球的表面积与它的内接正方体的表面积之比是()A.π3B.π4C.π2D.π答案:设:正方体边长设为:a则:球的半径为3a2所以球的表面积S1=4?π?R2=4π34a2=3πa2而正方体表面积为:S2=6a2所以比值为:S1S2=π2故选C36.参数方程表示什么曲线?答案:见解析解析:解:显然,则即得,即37.2010年广州亚运会乒乓球男单决赛中,马龙与王皓在前三局的比分分别是9:11、11:8、11:7,已知马琳与王皓的水平相当,比赛实行“七局四胜”制,即先赢四局者胜,求(1)王皓获胜的概率;
(2)比赛打满七局的概率.(3)记比赛结束时的比赛局数为ξ,求ξ的分布列及数学期望.答案:(1)在马龙先前三局赢两局的情况下,王皓取胜有两种情况.第一种是王皓连胜三局;第二种是在第四到第六局,王皓赢了两局,第七局王皓赢.在第一种情况下王皓取胜的概率为(12)3=18;在第二种情况下王皓取胜的概率为为C23(12)3×12=316,王皓获胜的概率18+316=516;(3分)(2)比赛打满七局有两种结果:马龙胜或王皓胜.记“比赛打满七局,马龙胜”为事件A,则P(A)=C13(12)3×12=316;记“比赛打满七局,王皓胜”为事件B,则P(B)=C23(12)3×12=316;因为事件A、B互斥,所以比赛打满七局的概率为P(A)+P(B)=38.(7分)(3)比赛结束时,比赛的局数为5,6,7,则打完五局马龙获胜的概率为12×12=14;打完六局马琳获胜的概率为C12(12)2×12=14,王皓取胜的概率为(12)3=18;比赛打满七局,马龙获胜的概率为C13(12)3×12=316,王皓取胜的概率为为C23(12)3×12=316;所以ξ的分布列为ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)38.已知
|x|<a,|y|<a.求证:|xy|<a.答案:证明:∵0<|x|<a,0<|y|<a∴由不等式的性质,可得|xy|<a39.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),则a•(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a•(b+c)=(2,-3,1)•(2,2,5)=4-6+5=3.故为:3.40.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不难判断命题p为真命题,命题q为假命题,从而?p为假命题,?q为真命题,所以A、B、C均为假命题,故选D.41.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则
即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.
(注:本小题结果可用分数表示)答案:(1)该选手进入第四轮才被淘汰的概率.(Ⅱ)该选手至多进入第三轮考核的概率.解析:(Ⅰ)记“该选手能正确回答第轮的问题”的事件为,则,,,,该选手进入第四轮才被淘汰的概率.(Ⅱ)该选手至多进入第三轮考核的概率.42.直线y=x-1的倾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A43.已知x与y之间的一组数据:
x
0
1
2
3
y
2
4
6
8
则y与x的线性回归方程为y=bx+a必过点()
A.(1.5,4)
B.(1.5,5)
C.(1,5)
D.(2,5)答案:B44.已知△ABC,D为AB边上一点,若AD=2DB,CD=13CA+λCB,则λ=
.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(
CB-CA)=13CA+23CB,∴λ=23,故为:23.45.已知:空间四边形ABCD,AB=AC,DB=DC,求证:BC⊥AD.答案:取BC的中点为E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.这样,BC就和平面ADE内的两条相交直线AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.46.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()
A.圆
B.椭圆
C.双曲线的一支
D.抛物线答案:A47.已知的单调区间;
(2)若答案:(1)(2)证明略解析:(1)对已知函数进行降次分项变形
,得,(2)首先证明任意事实上,而
.48.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率()A.15B.25C.35D.45答案:由题意知本题是一个古典概型,试验发生包含的事件是从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,共有A52=20种结果,满足条件的事件可以列举出有,41,41,43,45,54,53,52,51共有8个,根据古典概型概率公式得到P=820=25,故选B.49.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()
A.
B.3
C.2
D.2答案:A50.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一个元素,那么实数m的取值范围是
______.答案:如果P∩Q有且只有一个元素,即函数y=m与y=ax+1(a>0,且a≠1)图象只有一个公共点.∵y=ax+1>1,∴m>1.∴m的取值范围是(1,+∞).故:(1,+∞)第2卷一.综合题(共50题)1.在△ABC中,DE∥BC,DE将△ABC分成面积相等的两部分,那么DE:BC=()
A.1:2
B.1:3
C.
D.1:1答案:C2.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D3.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:14.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为(
)
A.-3
B.2
C.-3或2
D.3或-2答案:A5.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()
A.100个心脏病患者中至少有99人打酣
B.1个人患心脏病,则这个人有99%的概率打酣
C.100个心脏病患者中一定有打酣的人
D.100个心脏病患者中可能一个打酣的人都没有答案:D6.设,,,则P,Q,R的大小顺序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B7.已知100件产品中有5件次品,从中任意取出3件产品,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是()
A.B与C互斥
B.A与C互斥
C.任意两个事件均互斥
D.任意两个事件均不互斥答案:B8.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型为O型,则其父母血型的所有可能情况有()
A.12种
B.6种
C.10种
D.9种答案:D9.设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A、B两点,若点P恰为线段AB的中点,则|AF|+|BF|=______.答案:过点A,B,P分别作抛物线准线y=-3的垂线,垂足为C,D,Q,据抛物线定义,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故为810.直线l1:x+3=0与直线l2:x+3y-1=0的夹角的大小为______.答案:由于直线l1:x+3=0的斜率不存在,故它的倾斜角为90°,直线l2:x+3y-1=0的斜率为-33,故它的倾斜角为150>,故这两条直线的夹角为60°,故为60°.11.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.12.若命题p:2是偶数;命题q:2是5的约数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶数,∴命题p为真命题∵2不是5的约数,∴命题q为假命题∴p或q为真命题故选D13.若log
23(x-2)≥0,则x的范围是______.答案:由log
23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故为(2,3].14.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是()
A.-
B.-6
C.6
D.答案:C15.在(1+2x)5的展开式中,x2的系数等于______.(用数字作答)答案:由于(1+2x)5的展开式的通项公式为Tr+1=Cr5?(2x)r,令r=2求得x2的系数等于C25×22=40,故为40.16.(1+x2)5的展开式中x2的系数()A.10B.5C.52D.1答案:含x2项为C25(x2)2=10×x24=52x2,故选项为为C.17.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则4
i=1(ihi)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则4
i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根据三棱锥的体积公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故选B.18.给出的下列几个命题:
①向量共面,则它们所在的直线共面;
②零向量的方向是任意的;
③若则存在唯一的实数λ,使
其中真命题的个数为()
A.0
B.1
C.2
D.3答案:B19.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:31220.用反证法证明命题“在函数f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一个不小于”时,假设正确的是()
A.假设|f(1)|,|f(2)|,|f(3)|至多有一个小于
B.假设|f(1)|,|f(2)|,|f(3)|至多有两个小于
C.假设|f(1)|,|f(2)|,|f(3)|都不小于
D.假设|f(1)|,|f(2)|,|f(3)|都小于答案:D21.已知:在△ABC中,AD为∠BAC的平分线,AD的垂直平分线EF与AD交于点E,与BC的延长线交于点F,若CF=4,BC=5,则DF=______.答案:连接FA,如下图所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故为:622.抛物线y2=4px(p>0)的准线与x轴交于M点,过点M作直线l交抛物线于A、B两点.
(1)若线段AB的垂直平分线交x轴于N(x0,0),求证:x0>3p;
(2)若直线l的斜率依次为p,p2,p3,…,线段AB的垂直平分线与x轴的交点依次为N1,N2,N3,…,当0<p<1时,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)证明:设直线l方程为y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2•k2p2>0,得0<k2<1.令A(x1,y1)、B(x2,y2),则x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中点坐标为(2P-k2Pk2,2pk).AB垂直平分线为y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次为p,p2,p3,时,AB中垂线与x轴交点依次为N1,N2,N3,(0<p<1).∴点Nn的坐标为(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值为12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).23.已知e1
,
e2是夹角为60°的两个单位向量,且向量a=e1+2e2,则|a|=______.答案:由题意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故为:724.已知x与y之间的一组数据是()
x0123y2468则y与x的线性回归方程y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根据所给的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴这组数据的样本中心点是(1.5,5)∵线性回归直线一定过样本中心点,∴y与x的线性回归方程y=bx+a必过点(1.5,5)故选D.25.如图,设P、Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为()A.15B.45C.14D.13答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB
所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45为:45故选B.26.已知随机变量ξ的数学期望Eξ=0.05且η=5ξ+1,则Eη等于()
A.1.15
B.1.25
C.0.75
D.2.5答案:B27.若关于x的方程x2+ax+a2-1=0有一正根和一负根,则a的取值范围为______.答案:令f(x)=x2+ax+a2-1,∴二次函数开口向上,若方程有一正一负根,则只需f(0)<0,即a2-1<0,∴-1<a<1.故为:-1<a<1.28.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k为______答案:由题意知本题是一个系统抽样,总体中个体数是1200,样本容量是40,根据系统抽样的步骤,得到分段的间隔K=120040=30,故为:30.29.某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程
y=
bx+
a中的
b为9.4,则
a=______.答案:由图表中的数据可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即样本中心为(3.5,42),将点代入回归方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故为:9.1.30.下列在曲线上的点是()
A.
B.
C.
D.答案:D31.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A32.
若向量,满足||=||=2,与的夹角为60°,则|+|=()
A.
B.2
C.4
D.12答案:B33.下列四个命题中,正确的有
个
①;
②;
③,使;
④,使为29的约数.答案:两解析::①∵(-3)2-4×2×40,∴①正确;②∵2×(-1)+1=-1x,∴③不正确;④x=1是29的约数,∴④正确;∴正确的有两个点评:本题考查全称命题、特称命题,容易题34.若=(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D35.设点P(,1)(t>0),则||(O为坐标原点)的最小值是()
A.3
B.5
C.
D.答案:D36.已知向量i=(1,0),j=(0,1).若向量i+λj与λi+j垂直,则实数λ=______.答案:由题意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj与λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故为:037.已知按向量平移得到,则
.答案:3解析:由平移公式可得解得.38.已知,,那么P(B|A)等于()
A.
B.
C.
D.答案:B39.已知点P在曲线C1:x216-y29=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由双曲线的知识可知:C1x216-y29=1的两个焦点分别是F1(-5,0)与F2(5,0),且|PF1|+|PF2|=8而这两点正好是两圆(x+5)2+y2=1和(x-5)2+y2=1的圆心,两圆(x+5)2+y2=4和(x-5)2+y2=1的半径分别是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值为:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故选C40.用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是()
A.a2=b2
B.a2<b2
C.a2≤b2
D.a2<b2,且a2=b2答案:C41.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B42.判断下列结出的输入语句、输出语句和赋值语句是否正确?为什么?
(1)输出语句INPUT
a;b;c
(2)输入语句INPUT
x=3
(3)输出语句PRINT
A=4
(4)输出语句PRINT
20.3*2
(5)赋值语句3=B
(6)赋值语句
x+y=0
(7)赋值语句A=B=2
(8)赋值语句
T=T*T.答案:(1)输入语句
INPUT
a;b;c中,变量名之间应该用“,”分隔,而不能用“;”分隔,故(1)错误;(2)输入语句INPUT
x=3中,命令动词INPUT后面应写成“x=“,3,故(2)错误;(3)输出语句PRINT
A=4中,命令动词PRINT后面应写成“A=“,4,故(3)错误;(4)输出语句PRINT
20.3*2符合规则,正确;(5)赋值语句
3=B中,赋值号左边必须为变量名,故(5)错误;(6)赋值语句
x+y=0中,赋值号左边不能是表达式,故(6)错误;(7)赋值语句
A=B=2中.赋值语句不能连续赋值,故(7)错误;(8)赋值语句
T=T*T是,符合规则,正确;故正确的有(4)、(8)错误的是(1)、(2)、(3)、(5)、(6)、(7).43.已知直线l经过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截得的线段的中点M在直线x+y-3=0上.求直线l的方程.答案:∵点M在直线x+y-3=0上,∴设点M坐标为(t,3-t),则点M到l1、l2的距离相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l过点A(2,4),即5x-y-6=0,故直线l的方程为5x-y-6=0.44.(坐标系与参数方程)
从极点O作直线与另一直线ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.
(1)求点P的轨迹方程;
(2)设R为直线ρcosθ=4上任意一点,试求RP的最小值.答案:(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即为所求的轨迹方程.(2)由(1)知P的轨迹是以(32,0)为圆心,半径为32的圆,而直线l的解析式为x=4,所以圆与x轴的交点坐标为(3,0),易得RP的最小值为145.与x轴相切并和圆x2+y2=1外切的圆的圆心的轨迹方程是______.答案:设M(x,y)为所求轨迹上任一点,则由题意知1+|y|=x2+y2,化简得x2=2|y|+1.因此与x轴相切并和圆x2+y2=1外切的圆的圆心的轨迹方程是x2=2|y|+1.故为x2=2|y|+1.46.若曲线C的极坐标方程为
ρcos2θ=2sinθ,则曲线C的普通方程为______.答案:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故为x2=2y47.已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.48.若a=(1,2,-2),b=(1,0,2),则(a-b)•(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)•(a+2b)=0×3+2×2-4×2=-4.故为-4.49.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()
A.6块
B.7块
C.8块
D.9块答案:B50.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C第3卷一.综合题(共50题)1.在平行四边形ABCD中,等于()
A.
B.
C.
D.答案:C2.下列各式中错误的是()
A.||2=2
B.||=||
C.0•=0
D.m(n)=mn(m,n∈R)答案:C3.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.4.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.5.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()
A.=
B.与同向
C.∥
D.与有相同的位置向量答案:C6.设P、Q为两个非空实数集,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴当a=0时,b∈Q,P+Q={1,2,6}当a=2时,b∈Q,P+Q={3,4,8}当a=5时,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故选C7.直线y=3的一个单位法向量是______.答案:直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故为:(0,1)8.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.9.下列三句话按“三段论”模式排列顺序正确的是()
①y=sin
x(x∈R
)是三角函数;②三角函数是周期函数;
③y=sin
x(x∈R
)是周期函数.
A.①②③
B.②①③
C.②③①
D.③②①答案:B10.已知参数方程x=1+cosθy=sinθ,(参数θ∈[0,2π]),则该曲线上的点与定点A(-1,-1)的距离的最小值是
______.答案:∵参数方程x=1+cosθy=sinθ∴圆的方程为(x-1)2+y2=1∴定点A(-1,-1)到圆心的距离为5∴与定点A(-1,-1)的距离的最小值是d-r=5-1故为5-111.若回归直线方程中的回归系数b=0时,则相关系数r=______.答案:由于在回归系数b的计算公式中,与相关指数的计算公式中,它们的分子相同,故为:0.12.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.13.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,
则r的坐标为______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-
3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故为:(-3,-8,8)14.已知x∈{1,2,x2},则实数x=______.答案:∵x∈{1,2,x2},分情况讨论可得:①x=1此时集合为{1,2,1}不合题意②x=2此时集合为{1,2,4}合题意③x=x2解得x=0或x=1当x=0时集合为{1,2,0}合题意故为0或2.15.函数f(x)=ex(e为自然对数的底数)对任意实数x、y,都有()
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)答案:A16.已知G是△ABC的重心,过G的一条直线交AB、AC两点分别于E、F,且有AE=λAB,AF=μAC,则1λ+1μ=______.答案:∵G是△ABC的重心∴取过G平行BC的直线EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故为317.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE可表示为(用a,b、c表示).
()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故选A.18.如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有()
A.2个
B.3个
C.6个
D.9个
答案:D19.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:221320.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.21.方程x2-(k+2)x+1-3k=0有两个不等实根x1,x2,且0<x1<1<x2<2,则实数k的取值范围为______.答案:构造函数f(x)=x2-(k+2)x+1-3k∵方程x2-(k+2)x+1-3k=0有两个不等实根x1,x2,且0<x1<1<x2<2,∴f(0)>0f(1)<0f(2)>0∴1-3k>0-4k<01-5k>0∴0<k<15∴实数k的取值范围为(0,15)故为:(0,15)22.若a2+b2=c2,求证:a,b,c不可能都是奇数.答案:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2相矛盾,所以假设不成立,故原命题成立.23.设曲线C的方程是,将C沿x轴,y轴正向分别平移单位长度后,得到曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称.答案:(1)(2)证明略解析:(1)由已知得,,则平移公式是即代入方程得曲线C1的方程是(2)在曲线C上任取一点,设是关于点A的对称点,则有,,代入曲线C的方程,得关于的方程,即可知点在曲线C1上.反过来,同样可以证明,在曲线C1上的点关于点A的对称点在曲线C上,因此,曲线C与C1关于点A对称.24.在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,则AE=______.(用a、b表示)答案:∵平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故为:34a+14b.25.若x,y∈R,则“x=0”是“x+yi为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.不充分也不必要条件答案:根据复数的分类,x+yi为纯虚数的充要条件是x=0,y≠0.“若x=0则x+yi为纯虚数”是假命题,反之为真.∴x,y∈R,则“x=0”是“x+yi为纯虚数”的必要不充分条件故选B26.某学校为了解高一男生的百米成绩,随机抽取了50人进行调查,如图是这50名学生百米成绩的频率分布直方图.根据该图可以估计出全校高一男生中百米成绩在[13,14]内的人数大约是140人,则高一共有男生______人.
答案:第三和第四个小矩形面积之和为(0.72+0.68)×0.5=0.7,即百米成绩在[13,14]内的频率为:0.7,因为根据该图可以估计出全校高一男生中百米成绩在[13,14]内的人数大约是140人,则高一共有男生1400.7=200人.故为:200.27.已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足PN+12NM=0,PM•PF=0.
(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.答案:(Ⅰ)设N(x,y),则由PN+12NM=0,得P为MN的中点.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM•PF=-x+y24=0,即y2=4x.∴动点N的轨迹E的方程y2=4x.(Ⅱ)设直线l的方程为y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.设A(x1,y1),B(x2,y2),则
y1+y2=4k,y1y2=-4.假设存在点C(m,0)满足条件,则CA=(x1-m,y1),CB=(x2-m,y2),∴CA•CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴关于m的方程m2-m(4k2+2)-3=0有解.∴假设成立,即在x轴上存在点C,使得|CA|2+|CB|2=|AB|2成立.28.设复数z满足条件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可设z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故为429.若长方体的三个面的对角线长分别是a,b,c,则长方体体对角线长为()A.a2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:设同一顶点的三条棱分别为x,y,z,则x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),则对角线长为12(a2+b2+c2)=22a2+b2+c2.故选C.30.已知圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0
即
ρ2-42(22ρcosθ+22ρsinθ
),即x2+y2-4x-4y+6=0.(2)圆的参数方程为x=
2
+2cosαy=
2
+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值为6,最小值等于2.31.已知随机变量X的分布列是:(
)
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,则a的值为()
A.5
B.6
C.7
D.8答案:C32.如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=______.
答案:如图,连接OC,由题意DC是切线可得出OC⊥DC,再过过A作AE⊥OC于E,故有四边形AECD是矩形,可得AE=CD又⊙O的直径AB=5,C为圆周上一点,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故为:125.33.已知指数函数f(x)的图象过点(3,8),求f(6)的值.答案:设指数函数为:f(x)=ax,因为指数函数f(x)的图象过点(3,8),所以8=a3,∴a=2,所求指数函数为f(x)=2x;所以f(6)=26=64所以f(6)的值为64.34.实数系的结构图如图所示,其中1、2、3三个方格中的内容分别为()
A.有理数、零、整数
B.有理数、整数、零
C.零、有理数、整数
D.整数、有理数、零
答案:B35.如图,从圆O外一点A引切线AD和割线ABC,AB=3,BC=2,则切线AD的长为______.答案:由切割线定理可得AD2=AB?AC=3×5,∴AD=15.故为15.36.如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为(
)
A.①③
B.②④
C.①②③
D.②③④答案:C37.平面向量的夹角为,则等于(
)
A.
B.3
C.7
D.79答案:A38.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业租赁合同的风险评估
- 茶楼茶叶技术转让合同
- 个人协作合同范例
- 书写工具订购合同
- 殡葬服务专业团队
- 保送承诺保证书
- 服务外包合同的项目规划
- 自动化生产设备选购
- 装修材料选购协议样本
- 电子招标文件的审批流程
- 2024年家装家居行业解决方案-淘天集团
- 人教版八年级上册数学第三次月考试题
- 2024年新人教版七年级上册生物课件 第三章 微生物 第一节 微生物的分布
- 创业基础学习通超星期末考试答案章节答案2024年
- 人教版(2024新版)七年级上册道德与法治期末复习知识点考点提纲
- 北京大学图书馆招考聘用高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024年人教版初一生物(上册)期末考卷及答案(各版本)
- (2024版)中国血脂管理指南
- 2021年初级社工综合能力模拟试题及答案
- NB-T+10908-2021风电机组混凝土-钢混合塔筒施工规范
- DL-T-298-2011发电机定子绕组端部电晕检测与评定导则
评论
0/150
提交评论