




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年广东环境保护工程职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.抛物线y2=4x的焦点坐标为()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B2.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由题意可得P(x,y,z),在以M(3,4,0)为球心,2为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故为:27-102.3.设集合A={l,2},B={2,4),则A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故选D.4.与函数y=x相等的函数是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:对于A,f(x)=x(x≥0),不符合;对于B,f(x)=x(x≠0),不符合;对于C,f(x)=|x|(x∈R),不符合;对于D,f(x)=x(x∈R),符合;故选D.5.设直线y=kx与椭圆x24+y23=1相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于()A.±32B.±23C.±12D.±2答案:将直线与椭圆方程联立,y=kxx24+y23=1,化简整理得(3+4k2)x2=12(*)因为分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,故方程的两个根为±1.代入方程(*),得k=±32故选A.6.若直线l的方程为x=2,则该直线的倾斜角是()A.60°B.45°C.90°D.180°答案:∵直线l的方程为x=2∴直线l与x轴垂直∴直线l的倾斜角为90°故选C7.分析如图的程序:若输入38,运行右边的程序后,得到的结果是
______.答案:根据程序语句,其意义为:输入一个x,使得9<x<100a=x\10
为去十位数b=xMOD10
去余数,即取个位数x=10*b+a
重新组合数字,用原来二位数的十位当个位,个位当十位否则说明输入有误故当输入38时输出83故为:838.将两枚质地均匀透明且各面分别标有1,2,3,4的正四面体玩具各掷一次,设事件A={两个玩具底面点数不相同},B={两个玩具底面点数至少出现一个2点},则P(B|A)=______.答案:设事件A={两个玩具底面点数不相同},包括以下12个基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={两个玩具底面点数至少出现一个2点},则包括以下6个基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故为12.9.在空间直角坐标系中,已知A,B两点的坐标分别是A(2,3,5),B(3,1,4),则这两点间的距离|AB|=______.答案:∵A,B两点的坐标分别是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故为:6.10.已知θ是三角形内角且sinθ+cosθ=,则表示答案:C11.求圆Cx=3+4cosθy=-2+4sinθ(θ为参数)的圆心坐标,和圆C关于直线x-y=0对称的圆C′的普通方程.答案:圆Cx=3+4cosθy=-2+4sinθ(θ为参数)
即
(x-3)2+(y+2)2=16,表示圆心坐标(3,-2),半径等于4的圆.C(3,-2)关于直线x-y=0对称的点C′(-2,3),半径还是4,故圆C′的普通方程(x+2)2+(y-3)2=16.12.写出系数矩阵为1221,且解为xy=11的一个线性方程组是______.答案:由题意得:线性方程组为:x+2y=32x+y=3解之得:x=1y=1;故所求的一个线性方程组是x+2y=32x+y=3故为:x+2y=32x+y=3.13.有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:分析易知当以PP′为正方形的对角线时,所需正方形的包装纸的面积最小,此时边长最小.设此时的正方形边长为x则:(PP′)2=2x2,又因为PP′=a+2×32a=a+3a,∴(
a+3a)2=2x2,解得:x=6+22a.故选A14.若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是______.答案:由题设条件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴椭圆的标准方程是x280+y220=1.故为:x280+y220=1.15.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于16.设集合A={1,2},={2,3},C={2,3,4},则(A∩B)∪C=______.答案:由题得:A∩B={2},又因为C={2,3,4},(故A∩B)∪C={2,3,4}.故为
{2,3,4}.17.已知△ABC和点M满足.若存在实数使得成立,则m=()
A.2
B.3
C.4
D.5答案:B18.已知圆C:x2+y2=12,直线l:4x+3y=25.
(1)圆C的圆心到直线l的距离为______;
(2)圆C上任意一点A到直线l的距离小于2的概率为______.答案:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d=2532+42=5,(2)由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,根据上一问可知圆心到直线的距离是5,在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P=60°360°=16故为:5;1619.下列函数f(x)与g(x)表示同一函数的是
()A.f(x)=x0与g(x)=1B.f(x)=2lgx与g(x)=lgx2C.f(x)=|x|与g(x)=(x)2D.f(x)=x与g(x)=3x3答案:A、∵f(x)=x0,其定义域为{x|x≠0},而g(x)的定义域为R,故A错误;B、∵f(x)=2lgx,的定义域为{x|x>0},而g(x)=lgx2的定义域为R,故B错误;C、∵f(x)=|x|与g(x)=(x)2=x,其中f(x)的定义域为R,g(x)的定义域为{x|x≥0},故C错误;D、∵f(x)=x与g(x)=3x3=x,其中f(x)与g(x)的定义域为R,故D正确.故选D.20.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.21.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.答案:证明:假设a,b,c均小于1,即a<1,b<1,c<1,则有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,两者矛盾;故a,b,c至少有一个不小于1.22.曲线x2+ay+2y+2=0经过点(2,-1),则a=______.答案:由题意,∵曲线x2+ay+2y+2=0经过点(2,-1),∴22-a-2+2=0∴a=4故为423.(坐标系与参数方程)
从极点O作直线与另一直线ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.
(1)求点P的轨迹方程;
(2)设R为直线ρcosθ=4上任意一点,试求RP的最小值.答案:(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即为所求的轨迹方程.(2)由(1)知P的轨迹是以(32,0)为圆心,半径为32的圆,而直线l的解析式为x=4,所以圆与x轴的交点坐标为(3,0),易得RP的最小值为124.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
83
92
12
06
76
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38
15
51
00
13
42
99
66
02
79
54.答案:第8行第2列的数3开始向右读第一个小于850的数字是301,第二个数字是637,也符合题意,第三个数字是859,大于850,舍去,第四个数字是169,符合题意,第五个数字是555,符合题意,故为:301,637,169,55525.函数f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函数f(x)=11+x2(x∈R),∴1+x2≥1,所以原函数的值域是(0,1],故选B.26.圆x2+y2=1在矩阵10012对应的变换作用下的结果为______.答案:设P(x,y)是圆C:x2+y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵A=10012对应变换作用下新曲线上的对应点,则x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,将x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故为:x2+4y2=1.27.已知两个力F1,F2的夹角为90°,它们的合力大小为10N,合力与F1的夹角为60°,那么F2的大小为()A.53NB.5NC.10ND.52N答案:由题意可知:对应向量如图由于α=60°,∴F2的大小为|F合|?sin60°=10×32=53.故选A.28.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}29.已知点A分BC所成的比为-13,则点B分AC所成的比为______.答案:由已知得B是AC的内分点,且2|AB|=|BC|,故B分AC
的比为ABBC=|AB||BC|=12,故为12.30.若直线l与直线2x+5y-1=0垂直,则直线l的方向向量为______.答案:直线l与直线2x+5y-1=0垂直,所以直线l:5x-2y+k=0,所以直线l的方向向量为:(2,5).故为:(2,5)31.有一个质地均匀的正四面体,它的四个面上分别标有1,2,3,4这四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S,则“S恰好为4”的概率为______.答案:由题意知本题是一个古典概型,试验发生包含的事件是抛掷这颗正四面体骰子两次,共有4×4×4=64种结果,满足条件的事件是三次在正四面体底面的数字和为S,S恰好为4,可以列举出这种事件,(1,1,2),(1,2,1),(2,1,1)共有3种结果,根据古典概型概率公式得到P=364,故为:364.32.若抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,则p的值为()
A.2
B.4
C.8
D.4答案:C33.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则4
i=1(ihi)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则4
i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根据三棱锥的体积公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故选B.34.在极坐标系中,直线l经过圆ρ=cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=cosθ可知此圆的圆心为(12,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=12,所以直线l与极轴的交点的极坐标为(12,0).故为:(12,0).35.设随机变量X服从B(6,),则P(X=3)的值是()
A.
B.
C.
D.答案:B36.若函数y=f(x)的定义域是[2,4],则y=f(log12x)的定义域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函数y=f(x)的定义域是[2,4],∴y=f(t)的定义域也为[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函数的定义域即解析式中自变量的取值范围,∴y=f(log12x)的定义域为116≤x≤14,即:[116,14].故选C.37.如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上.答案:连接OE,OF,OG,OH.∵四边形ABCD为菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分别为AB、BC、CD、DA的中点,∴OE=OF=OG=OH=12AB,∴E、F、G、H四点在以O为圆心,12AB为半径的圆上.38.经过两点A(-3,5),B(1,1
)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1
)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.39.已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.
(1)求证:平面B1EF⊥平面BDD1B1;
(2)求点D1到平面B1EF的距离.答案:(1)证明略(2)解析:(1)
建立如图所示的空间直角坐标系,则D(0,0,0),B(2,2,0),E(2,,0),F(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).设平面B1EF的法向量为n,且n=(x,y,z)则n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,则y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距离d===.40.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.41.已知R为实数集,Q为有理数集.设函数f(x)=0,(x∈CRQ)1,(x∈Q),则()A.函数y=f(x)的图象是两条平行直线B.limx→∞f(x)=0或limx→∞f(x)=1C.函数f[f(x)]恒等于0D.函数f[f(x)]的导函数恒等于0答案:函数y=f(x)的图象是两条平行直线上的一些孤立的点,故A不正确;函数f(x)的极限只有唯一的值,左右极限不等,则该函数不存在极限,故B不正确;若x是无理数,则f(x)=0,f[f(x)]=f(0)=1,故C不正确;∵f[f(x)]=1,∴函数f[f(x)]的导函数恒等于0,故D正确;故选D.42.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()
A.2×0.44
B.2×0.45
C.3×0.44
D.3×0.64答案:C43.方程ax2+2x+1=0至少有一个负的实根的充要条件是()
A.0<a≤1
B.a<1
C.a≤1
D.0<a≤1或a<0答案:C44.设i为虚数单位,若(x+i)(1-i)=y,则实数x,y满足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C45.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=346.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:2247.(难线性运算、坐标运算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:设A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),则M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,当AP与PC同向,BP与PD同向时取等号,设PC=λAP,PD=μBP,则1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,当x=y=12时,M的最小值为22.48.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,当n=k+1时,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1时,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.49.将参数方程x=1+2cosθy=2sinθ(θ为参数)化成普通方程为
______.答案:由题意得,x=1+2cosθy=2sinθ⇒x-1=2cosθy=2sinθ,将参数方程的两个等式两边分别平方,再相加,即可消去含θ的项,所以有(x-1)2+y2=4.50.在120个零件中,一级品24个,二级品36个,三级品60个.用系统抽样法从中抽取容量为20的样本、则每个个体被抽取到的概率是()
A.
B.
C.
D.答案:D第2卷一.综合题(共50题)1.“若x、y全为零,则xy=0”的否命题为______.答案:由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.故为:若x、y不全为零,则xy≠0.2.(1)若三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,则k的值为?
(2)若α∈N,又三点A(α,0),B(0,α+4),C(1,3)共线,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直线2x+3y+8=0和x-y-1=0的交点为(-1,-2).∵三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,∴(-1,-2)在直线x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三点共线,说明直线AB与直线AC的斜率相等∴a+4-00-a=3-01-a,解得:a=23.盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A与B是否相互独立,说明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.4.某校选修乒乓球课程的学生中,高一年级有40名,高二年级有50名,现用分层抽样的方法在这90名学生中抽取一个样本,已知在高一年级的学生中抽取了8名,则在高二年级的学生中应抽取的人数为______.答案:∵高一年级有40名学生,在高一年级的学生中抽取了8名,∴每个个体被抽到的概率是
840=15∵高二年级有50名学生,∴要抽取50×15=10名学生,故为:10.5.如图,已知PA是圆O的切线,切点为A,PO交圆O于B、C两点,PA=3,PB=1,则∠C=______.答案:∵PA切圆O于A点,PBC是圆O的割线∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵点O在BC上,即BC是圆O的直径,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根据正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是锐角,∴∠C=30°.故为:30°6.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:107.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()
A.小前提错
B.结论错
C.正确的
D.大前提错答案:C8.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:239.直线l1:x+ay=2a+2与直线l2:ax+y=a+1平行,则a=______.答案:直线l1:x+ay=2a+2即x+ay-2a-2=0;直线l2:ax+y=a+1即ax+y-a-1=0,∵直线l1与直线l2互相平行∴当a≠0且a≠-1时,1a=a1≠-2a-2-a-1,解之得a=1当a=0时,两条直线垂直;当a=-1时,两条直线重合故为:110.在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程x225+y29=1的曲线为C,关于曲线C有下列命题:
①曲线C是以F1、F2为焦点的椭圆的一部分;
②曲线C关于x轴、y轴、坐标原点O对称;
③若P是上任意一点,则PF1+PF2≤10;
④若P是上任意一点,则PF1+PF2≥10;
⑤曲线C围成图形的面积为30.
其中真命题的序号是______.答案:∵x225+y29=1即为|x|5+|y|3=1表示四条线段,如图故①④错,②③对对于⑤,图形的面积为3×52×4=30,故⑤对.故为②③⑤11.某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)
2
3
4
5
销售额y(万元)
27
39
48
54
根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()
A.65.5万元
B.66.2万元
C.67.7万元
D.72.0万元答案:A12.以直线x+3=0为准线的抛物线的标准方程是______.答案:由题意,抛物线的焦点在x轴上,焦点坐标为(3,0),∴抛物线的标准方程是y2=12x故为:y2=12x13.已知点D是△ABC的边BC的中点,若记AB=a,AC=b,则用a,b表示AD为______.答案:以AB,AC为临边作平行四边形ACEB,连接其对角线AE、BC交与点D,易知D是△ABC的边BC的中点,且D是AE的中点,如图:由向量的平行四边形法则可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故为:AD=12(a+b)14.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()
A.2+
B.
C.
D.1+答案:A15.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是______.答案:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.故:圆.16.已知指数函数f(x)=ax(a>0且a≠1)过点(3,8),求f(4)=______.答案:设指数函数为y=ax(a>0且a≠1)将(3,8)代入得8=a3解得a=2,所以y=2x,则f(4)=42=16故为16.17.设a,b,λ都为正数,且a≠b,对于函数y=x2(x>0)图象上两点A(a,a2),B(b,b2).
(1)若AC=λCB,则点C的坐标是______;
(2)过点C作x轴的垂线,交函数y=x2(x>0)的图象于D点,由点C在点D的上方可得不等式:______.答案:(1)设点C(x,y),因为点A(a,a2),B(b,b2),AC=λCB,则(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因为点C在点D的上方,则y>yD,所以a2+λb21+λ>(a+λb1+λ)218.若椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离是______.答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故为419.在四边形ABCD中有AC=AB+AD,则它的形状一定是______.答案:由向量加法的平行四边形法则及AC=AB+AD,知四边形ABCD为平行四边形,故为:平行四边形.20.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,则点P一定在()A.∠AOB平分线所在直线上B.线段AB中垂线上C.AB边所在直线上D.AB边的中线上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|
和b|b|
是△OAB中边OA、OB上的单位向量,∴(a|a|+b|b|
)在∠AOB平分线线上,∴t(a|a|+b|b|
)在∠AOB平分线线上,∴则点P一定在∠AOB平分线线上,故选A.21.若关于x,y的二元一次方程组m11mxy=m+12m至多有一组解,则实数m的取值范围是______.答案:关于x,y的二元一次方程组m11mxy=m+12m即二元一次方程组mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)当m-1≠0时(m2-1)x=m(m-1)至多有一组解∴m≠1故为:(-∞,1)∪(1,+∞)22.已知|a|=1,|b|=2,向量a与b的夹角为60°,则|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a与b的夹角为60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|
=7,故为7.23.等边三角形ABC中,P在线段AB上,且AP=λAB,若CP•AB=PA•PB,则实数λ的值是______.答案:设等边三角形ABC的边长为1.则|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP•AB=(CA+AP)•AB=CA•AB+
AP•AB=PA•PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化简-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故为:2-2224.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:22325.设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是______.答案:设活过10岁后能活到15岁的概率是P,由题意知0.9×P=0.6,解得P=23即一个10岁的这种动物,它能活到15岁的概率是23故为:23.26.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:
序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;
(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)27.已知x与y之间的一组数据是()
x0123y2468则y与x的线性回归方程y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根据所给的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴这组数据的样本中心点是(1.5,5)∵线性回归直线一定过样本中心点,∴y与x的线性回归方程y=bx+a必过点(1.5,5)故选D.28.把点按向量平移到点,则的图象按向量平移后的图象的函数表达式为(
).A.B.C.D.答案:D解析:,由可得,所以平移后的函数解析式为29.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.答案:证明:假设a,b,c均小于1,即a<1,b<1,c<1,则有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,两者矛盾;故a,b,c至少有一个不小于1.30.(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为:ρ2+2ρcosθ=0,点P的极坐标为(2,π2),过点P作圆C的切线,则两条切线夹角的正切值是______.答案:圆C的极坐标方程ρ2+2ρcosθ=0,化为普通方程为x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)为圆心,以1为半径的圆.点P的极坐标为(2,π2),化为直角坐标为(0,2).设两条切线夹角为2θ,则sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故为43.31.如图,已知点P在正方体ABCD-A′B′C′D′的对角线BD′上,∠PDA=60°.
(Ⅰ)求DP与CC′所成角的大小;
(Ⅱ)求DP与平面AA′D′D所成角的大小.答案:方法一:如图,以D为原点,DA为单位长建立空间直角坐标系D-xyz.则DA=(1,0,0),CC′=(0,0,1).连接BD,B'D'.在平面BB'D'D中,延长DP交B'D'于H.设DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA•DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因为cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP与CC'所成的角为45°.(8分)(Ⅱ)平面AA'D'D的一个法向量是DC=(0,1,0).因为cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP与平面AA'D'D所成的角为30°.(12分)方法二:如图,以D为原点,DA为单位长建立空间直角坐标系D-xyz.则DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).设P(x,y,z)则BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,则DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因为cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP与CC'所成的角为45°.(8分)(Ⅱ)平面AA'D'D的一个法向量是DC=(0,1,0).因为cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP与平面AA'D'D所成的角为30°.(12分)32.已知正方形ABCD的边长为1,=,=,=,则的模等于(
)
A.0
B.2+
C.
D.2答案:D33.在空间直角坐标系中,已知两点P1(-1,3,5),P2(2,4,-3),则|P1P2|=()
A.
B.3
C.
D.答案:A34.已知向量a与b的夹角为π3,|a|=2,则a在b方向上的投影为______.答案:由投影的定义可得:a在b方向上的投影为:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故为:2235.给出以下变量①吸烟,②性别,③宗教信仰,④国籍,其中属于分类变量的有______.答案:①因为吸烟不是分类变量,是否吸烟才是分类变量,其他②③④属于分类变量.故为:②③④.36.求两条平行直线3x-4y-11=0与6x-8y+4=0的距离是()
A.3
B.
C.
D.4答案:B37.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是
______.答案:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故为:1.2.38.不等式|x-2|+|x+1|<5的解集为()
A.(-∞,-2)∪(3,+∞)
B.(-∞,-1)∪(2,+∞)
C.(-2,3)
D.(-∞,+∞)答案:C39.给出命题:
①线性回归分析就是由样本点去寻找一条贴近这些点的直线;
②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;
③通过回归方程=bx+a及其回归系数b可以估计和预测变量的取值和变化趋势;
④线性相关关系就是两个变量间的函数关系.其中正确的命题是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D40.将函数y=sin(x+)的图象按向量=(-m,0)平移所得的图象关于y轴对称,则m最小正值是
(
)
A.
B.
C.
D.答案:A41.双曲线x225-y29=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是()A.17B.7C.7或17D.2或22答案:由题意,a=5,则由双曲线的定义可知PF1-PF2=±10,∴PF2=2或22,故选D.42.已知两曲线参数方程分别为x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它们的交点坐标为______.答案:曲线参数方程x=5cosθy=sinθ(0≤θ<π)的直角坐标方程为:x25+y2=1;曲线x=54t2y=t(t∈R)的普通方程为:y2=45x;解方程组:x25+y2=1y2=45x得:x=1y=255∴它们的交点坐标为(1,255).故为:(1,255).43.,不等式恒成立的否定是
▲
答案:,不等式成立解析::,不等式成立点评:本题考查推理与证明部分命题的否定,属于容易题44.已知函数f(x)=2x,x≥01,
x<0,若f(1-a2)>f(2a),则实数a的取值范围是______.答案:函数f(x)=2x,x≥01,
x<0,x<0时是常函数,x≥0时是增函数,由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故为:-1<a<2-1.45.已知α1,α2,…αn∈(0,π),n是大于1的正整数,求证:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:证明:下面用数学归纳法证明(1)n=2时,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|•|sinα2|<sinα1+sinα2,所以n=2时成立.(2)假设n=k(k≥2)时成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk当n=k+1时,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|•|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1时也成立.由(1)(2)得,原式成立.46.如图,AB是半圆O的直径,C是AB延长线上一点,CD切半圆于D,CD=4,AB=3BC,则AC的长是______.答案:∵CD是圆O的切线,∴由切割线定理得:CD2=CB×CA,∵AB=3BC,设BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴则AC的长是8.故填:8.47.某射手射击所得环数X的分布列为:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
则此射手“射击一次命中环数大于7”的概率为()
A.0.28
B.0.88
C.0.79
D.0.51答案:C48.直线(t为参数)的倾斜角等于()
A.
B.
C.
D.答案:A49.已知椭圆(a>b>0)的焦点分别为F1,F2,b=4,离心率e=过F1的直线交椭圆于A,B两点,则△ABF2的周长为()
A.10
B.12
C.16
D.20答案:D50.俊、杰兄弟俩分别在P、Q两篮球队效力,P队、Q队分别有14和15名球员,且每个队员在各自队中被安排首发上场的机会是均等的,则P、Q两队交战时,俊、杰兄弟俩同为首发上场交战的概率是(首发上场各队五名队员)(
)A.B.C.D.答案:B解析:解:P(俊首发)=
P(杰首发)==P(俊、杰同首发)=
选B评析:考察考生等可能事件的概率与相互独立事件的概率问题。第3卷一.综合题(共50题)1.不等式ax2+bx+2>0的解集是(-,),则a+b的值是()
A.10
B.-10
C.14
D.-14答案:D2.已知a>0,且a≠1,解关于x的不等式:
答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<03.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(
)。答案:44.若向量n与直线l垂直,则称向量n为直线l的法向量.直线x+2y+3=0的一个法向量为()
A.(2,-1)
B.(1,-2)
C.(2,1)
D.(1,2)答案:D5.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A.944B.2544C.3544D.3744答案:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率为58+1588=3544,故选C.6.已知直线l1,l2的夹角平分线所在直线方程为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()
A.bx+ay+c=0
B.ax-by+c=0
C.bx+ay-c=0
D.bx-ay+c=0答案:A7.如图所示,已知A、B、C三点不共线,O为平面ABC外的一点,若点M满足
(1)判断三个向量是否共面;
(2)判断点M是否在平面ABC内.答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三个向量的基线又有公共点M,∴M、A、B、C共面,即点M在平面ABC内,8.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.9.用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是()
A.a2=b2
B.a2<b2
C.a2≤b2
D.a2<b2,且a2=b2答案:C10.已知两定点F1(5,0),F2(-5,0),曲线C上的点P到F1、F2的距离之差的绝对值是8,则曲线C的方程为()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:据双曲线的定义知:P的轨迹是以F1(5,0),F2(-5,0)为焦点,以实轴长为8的双曲线.所以c=5,a=4,b2=c2-a2=9,所以双曲线的方程为:x216-y29=1故选B11.求证:答案:证明见解析解析:证:∴12.若直线x=1的倾斜角为α,则α等于()A.0°B.45°C.90°D.不存在答案:直线x=1与x轴垂直,故直线的倾斜角是90°,故选C.13.一只袋中装有2个白球、3个红球,这些球除颜色外都相同.
(Ⅰ)从袋中任意摸出1个球,求摸到的球是白球的概率;
(Ⅱ)从袋中任意摸出2个球,求摸出的两个球都是白球的概率;
(Ⅲ)从袋中任意摸出2个球,求摸出的两个球颜色不同的概率.答案:(Ⅰ)从5个球中摸出1个球,共有5种结果,其中是白球的有2种,所以从袋中任意摸出1个球,摸到白球的概率为25.
…(4分)(Ⅱ)从袋中任意摸出2个球,共有C25=10种情况,其中全是白球的有1种,故从袋中任意摸出2个球,摸出的两个球都是白球的概率为110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的两个球颜色不同的情况共有2×3=6种,故从袋中任意摸出2个球,摸出的2个球颜色不同的概率为610=35.
…(14分)14.抛物线y2=4x,O为坐标原点,A,B为抛物线上两个动点,且OA⊥OB,当直线AB的倾斜角为45°时,△AOB的面积为______.答案:设直线AB的方程为y=x-m,代入抛物线联立得x2-(2m+4)x+m2=0,则x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面积为S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因为OA⊥OB,设A(x1,2x1),B(x2,-2x2)所以2x1x1•-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故为:8515.“a2+b2≠0”的含义为()A.a和b都不为0B.a和b至少有一个为0C.a和b至少有一个不为0D.a不为0且b为0,或b不为0且a为0答案:a2+b2≠0的等价条件是a≠0或b≠0,即两者中至少有一个不为0,对照四个选项,只有C与此意思同,C正确;A中a和b都不为0,是a2+b2≠0充分不必要条件;B中a和b至少有一个为0包括了两个数都是0,故不对;D中只是两个数仅有一个为0,概括不全面,故不对;故选C16.将直线y=x绕原点逆时针旋转60°,所得直线的方程为()
A.y=-x
B.
C.y=-3x
D.答案:A17.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:设A(x1,y1),B(x2,y2),根据抛物线定义,x1+x2+p=8,∵AB的中点到y轴的距离是2,∴x1+x22=2,∴p=4;∴抛物线方程为y2=8x故选B18.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:3319.如图,已知△ABC,过顶点A的圆与边BC切于BC的中点P,与边AB、AC分别交于点M、N,且CN=2BM,点N平分AC.则AM:BM=()
A.2
B.4
C.6
D.7
答案:D20.探测某片森林知道,可采伐的木材有10万立方米.设森林可采伐木材的年平均增长率为8%,则经过______年,可采伐的木材增加到40万立方米.答案:设经过n年可采伐本材达到40万立方米则有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即经过19年,可采伐的木材增加到40万立方米故为1921.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等价于或解得或即故不等式的解集为。22.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法从中抽取样本.若样本中具有初级职称的职工为10人,则样本容量为()
A.10
B.20
C.40
D.50答案:C23.在语句PRINT
3,3+2的结果是()
A.3,3+2
B.3,5
C.3,5
D.3,2+3答案:B24.若a2+b2+c2=1,则a+2b+3c的最大值为______.答案:因为已知a、b、c是实数,且a2+b2+c2=1根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值为14.故为:14.25.向面积为S的△ABC内任投一点P,则△PBC的面积小于S2的概率为______.答案:记事件A={△PBC的面积小于S2},基本事件空间是三角形ABC的面积,(如图)事件A的几何度量为图中阴影部分的面积(DE是三角形的中位线),因为阴影部分的面积是整个三角形面积的34,所以P(A)=阴影部分的面积三角形ABC的面积=34.故为:34.26.一个水平放置的平面图形,其斜二测直观图是一个等腰三角形,腰AB=AC=1,如图,则平面图形的实际面积为()
A.1
B.2
C.
D.
答案:A27.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.28.正方体的内切球和外接球的半径之比为
A.:1
B.:2
C.2:
D.:3答案:D29.已知三角形ABC的一个顶点A(2,3),AB边上的高所在的直线方程为x-2y+3=0,角B的平分线所在的直线方程为x+y-4=0,求此三角形三边所在的直线方程.答案:由题意可得AB边的斜率为-2,由点斜式求得AB边所在的直线方程为y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故点B的坐标为(3,1).设点A关于角B的平分线所在的直线方程为x+y-4=0的对称点为M(a,b),则M在BC边所在的直线上.则由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故点M(1,2),由两点式求得BC的方程为y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得点C的坐标为(2,52),由此可得得AC的方程为x=2.30.将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.答案:函数解析式是解析:将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.31.已知,求证:.答案:证明略解析:因为是轮换对称不等式,可考虑由局部证整体.,相加整理得.当且仅当时等号成立.【名师指引】综合法证明不等式常用两个正数的算术平均数不小于它们的几何平均数这一结论,运用时要结合题目条件,有时要适当变形.32.用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1时,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立33.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求此抛物线方程.答案:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0则x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2
]=5(12p-1)2-5=15解得p=6或p=-2∴抛物线的方程为y2=12x或y2=-4x34.已知复数z=2+i,则z2对应的点在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,则z2=(2+i)2=22+4i+i2=3+4i.所以,复数z2的实部等于3,虚部等于4.所以z2对应的点在第Ⅰ象限.故选A.35.对某种电子元件进行寿命跟踪调查,所得样本频率分布直方图如图,由图可知:一批电子元件中,寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是()A.12B.13C.14D.16答案:由于已知的频率分布直方图中组距为100,寿命在100~300小时的电子元件对应的矩形的高分别为:12000,32000则寿命在100~300小时的电子元件的频率为:100?(12000+32000)=0.2寿命在300~600小时的电子元件对应的矩形的高分别为:1400,1250,32000则寿命在300~600小时子元件的频率为:100?(1400+1250+32000)=0.8则寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是0.2:0.8=14故选C36.已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0,平行,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成功心理定律
- java代理机制面试题及答案
- 肿瘤患者夏季防暑指南
- 工程人员培训
- 邮政综柜培训
- 羊水栓塞的产科护理查房
- 2025年中国内部防火门行业市场全景分析及前景机遇研判报告
- 针织教程培训课件
- 肾内科饮食指导
- 中医肿瘤消融方案
- 2025年陕西省中考数学真题试卷及答案解析
- 呼吸机的维护与保养标准流程
- 2025年北方华创招聘笔试参考题库含答案解析
- 期末综合试题 2024-2025学年下期初中英语人教版七年级下册(新教材)
- 2025年全国新高考I卷高考全国一卷真题英语试卷(真题+答案)
- 高中生物学业水平合格性考试:人教版必修1+必修2必背考点
- 安全生产应急演练方案(合集)
- 2025江苏扬州宝应县“乡村振兴青年人才”招聘67人笔试模拟试题含答案详解
- 2025年甘肃高考真题化学试题(解析版)
- 中国政法大学《中国政治制度史》2023-2024学年第二学期期末试卷
- 超高玻璃吊装方案(3篇)
评论
0/150
提交评论