版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年和田师范专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.若点M,A,B,C对空间任意一点O都满足则这四个点()
A.不共线
B.不共面
C.共线
D.共面答案:D2.若直线的参数方程为,则直线的斜率为(
)A.B.C.D.答案:D3.已知随机变量X满足D(X)=2,则D(3X+2)=()
A.2
B.8
C.18
D.20答案:C4.已知向量a=(1,1)与b=(2,3),用坐标表示2a+b为______.答案:根据题意,a=(1,1)与b=(2,3),则2a+b=2(1,1)+(2,3)=(4,5);故为(4,5).5.已知、分别是与x轴、y轴方向相同的单位向量,且=-3+6,=-6+4,=--6,则一定共线的三点是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C6.已知正整数指数函数f(x)的图象经过点(3,27),
(1)求函数f(x)的解析式;
(2)求f(5);
(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.答案:(1)设正整数指数函数为f(x)=ax(a>0,a≠1,x∈N+),因为函数f(x)的图象经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,∴f(x)有最小值,最小值是f(1)=3;f(x)无最大值.解析:已知正整数指数函数f(x)的图象经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.7.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提都错导致结论错答案:A8.若函数f(x)=loga(x+b)的图象如图,其中a,b为常数.则函数g(x)=ax+b的大致图象是(
)
答案:D解析:试题分析:解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=ax+b的大致图象是D故选D.9.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).10.求下列函数的定义域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函数y=234x+1有意义,只需4x+1≠0,即x≠-14,所以,函数的定义域为{x|x≠-14}.设y=2u,u=34x+1≠0,则u>0,由函数y=2u,得y≠20=1,所以函数的值域为{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函数的定义域为{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函数的值域为[0,2).11.若a2+b2+c2=1,则a+2b+3c的最大值为______.答案:因为已知a、b、c是实数,且a2+b2+c2=1根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值为14.故为:14.12.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D13.已知a,b,c是空间的一个基底,且实数x,y,z使xa+yb+zc=0,则x2+y2+z2=______.答案:∵a,b,c是空间的一个基底∴a,b,c两两不共线∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故为:014.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()
A.
B.
C.
D.答案:B15.(1+x2)5的展开式中x2的系数()A.10B.5C.52D.1答案:含x2项为C25(x2)2=10×x24=52x2,故选项为为C.16.若x~N(2,σ2),P(0<x<4)=0.8,则P(0<X<2)=______.答案:∵X~N(2,σ2),∴正态曲线关于x=2对称,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故为:0.4.17.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.
在如图中纵轴表示离学校的距离,横轴表示出发后的时间,则如图中的四个图形中较符合该学生走法的是()A.
B.
C.
D.
答案:由题意可知:由于怕迟到,所以一开始就跑步,所以刚开始离学校的距离随时间的推移应该相对较快.而等跑累了再走余下的路程,则说明离学校的距离随时间的推移在后半段时间应该相对较慢.所以适合的图象为:故选B.18.螺母是由
______和
______两个简单几何体构成的.答案:根据螺母的结构特征知,是由正六棱柱里面挖去的一个圆柱构成的,故为:正六棱柱,圆柱.19.已知平面上直线l的方向向量=(-,),点O(0,0)和A(1,-2)在l上的射影分别是O'和A′,则=λ,其中λ等于()
A.
B.-
C.2
D.-2答案:D20.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-321.有3名同学要争夺2个比赛项目的冠军,冠军获得者共有______种可能.答案:第一个项目的冠军有3种情况,第二个项目的冠军也有3种情况,根据分步计数原理,冠军获得者共有3×3=9种可能,故为9.22.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)•(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故选B.23.在班级随机地抽取8名学生,得到一组数学成绩与物理成绩的数据:
数学成绩6090115809513580145物理成绩4060754070856090(1)计算出数学成绩与物理成绩的平均分及方差;
(2)求相关系数r的值,并判断相关性的强弱;(r≥0.75为强)
(3)求出数学成绩x与物理成绩y的线性回归直线方程,并预测数学成绩为110的同学的物理成绩.答案:(1)计算出数学成绩与物理成绩的平均分及方差;.x=100,.y=65,数学成绩方差为750,物理成绩方差为306.25;(4分)(2)求相关系数r的值,并判断相关性的强弱;r=6675≈0.94>0.75,相关性较强;(8分)(3)求出数学成绩x与物理成绩y的线性回归直线方程,并预测数学成绩为110的同学的物理成绩.y=0.6x+5,预测数学成绩为110的同学的物理成绩为71.(12分)24.若直线x=1的倾斜角为α,则α()A.等于0B.等于π4C.等于π2D.不存在答案:由题意知直线的斜率不存在,故倾斜角α=π2,故选C.25.函数y=(12)x的值域为______.答案:因为函数y=(12)x是指数函数,所以它的值域是(0,+∞).故为:(0,+∞).26.凡自然数都是整数,而
4是自然数
所以4是整数.以上三段论推理()
A.正确
B.推理形式不正确
C.两个“自然数”概念不一致
D.两个“整数”概念不一致答案:A27.在对两个变量x,y进行线性回归分析时,有下列步骤:
①对所求出的回归直线方程作出解释;
②收集数据(xi,yi),i=1,2,…,n;
③求线性回归方程;
④求相关系数;
⑤根据所搜集的数据绘制散点图.
如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D28.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.29.请写出所给三视图表示的简单组合体由哪些几何体组成.______.答案:由已知中的三视图我们可以判断出该几何体是由一个底面面积相等的圆锥和圆柱组合而成故为:圆柱体,圆锥体30.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B31.为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高如下表所示:
母亲身x(cm)159160160163159154159158159157女儿身Y(cm)158159160161161155162157162156计算x与Y的相关系数r≈0.71,通过查表得r的临界值r0.05=0.632,从而有______的把握认为x与Y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y═34.92+0.78x,因此,当母亲的身高为161cm时,可以估计女儿的身高大致为______.答案:查对临界值表,由临界值r0.05=0.632,可得有95%的把握认为x与Y之间具有线性相关关系,回归直线方程为y=34.92+0.78x,因此,当x=161cm时,y=34.92+0.78x=34.92+0.78×161=161cm故为:95%,161cm.32.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.33.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
据以上数据估计两人的技术稳定性,结论是()
A.甲优于乙
B.乙优于甲
C.两人没区别
D.无法判断答案:A34.若一次函数y=mx+b在(-∞,+∞)上是增函数,则有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函数y=mx+b在(-∞,+∞)上是增函数,∴一次项系数m>0,故选C.35.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不难判断命题p为真命题,命题q为假命题,从而?p为假命题,?q为真命题,所以A、B、C均为假命题,故选D.36.下列函数中,与函数y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函数y=x的定义域为R,选项中A,D定义域不是R,是A、D不正确.选项C的对应法则不同,C不正确.故选B.37.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=245,求BD和BC的长.答案:(1)证明:连接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圆中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(内错角相等,两直线平行)则由AE⊥DC知OC⊥DC即DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.38.证明:已知a与b均为有理数,且a和b都是无理数,证明a+b也是无理数.答案:证明:假设a+b是有理数,则(a+b)(a-b)=a-b由a>0,b>0则a+b>0即a+b≠0∴a-b=a-ba+b∵a,bÎQ且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q这样(a+b)+(a-b)=2a∈Q从而aÎQ(矛盾)∴a+b是无理数39.已知f(x)=,则不等式xf(x)+x≤2的解集是(
)。答案:{x|x≤1}40.若函数y=f(x)的定义域是[12,2],则函数y=f(log2x)的定义域为______.答案:由题意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故为:[2,4].41.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()
A.
B.
C.
D.答案:C42.过点A(1,4)且在x、y轴上的截距相等的直线共有______条.答案:当直线过坐标原点时,方程为y=4x,符合题意;当直线不过原点时,设直线方程为x+y=a,代入A的坐标得a=1+4=5.直线方程为x+y=5.所以过点A(1,4)且在x、y轴上的截距相等的直线共有2条.故为2.43.(几何证明选讲选做题)
如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,则切线PA的长度等于______.答案:∵∠PAB=120°,∴优弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圆O的切线,切点为A,∴∠OAP=90°∴PA=3OA=23故为:2344.将参数方程化为普通方程为(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C45.从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A、B为切点.求证:ACBC=ADBD.
答案:证明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得证.46.正方体的内切球和外接球的半径之比为
A.:1
B.:2
C.2:
D.:3答案:D47.三个数a=60.5,b=0.56,c=log0.56的大小顺序为______.(按大到小顺序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故为a>b>c.48.不论k为何实数,直线y=kx+1与曲线x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是______.答案:直线y=kx+1恒过(0,1)点,与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,即:a2+12
≤4+2a所以,-1≤a≤3故为:-1≤a≤3.49.m为何值时,关于x的方程8x2-(m-1)x+(m-7)=0的两根,
(1)为正数;
(2)一根大于2,一根小于2.答案:(1)设方程两根为x1,x2,则∵方程的两根为正数,∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由题意得f(2)<0,解得m>27.50.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为
______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.3第2卷一.综合题(共50题)1.设U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},现有一质点随机落入区域U中,则质点落入M中的概率是()A.2πB.12πC.1πD.2π答案:满足条件U={(x,y)|x2+y2≤1,x,y∈R}的圆,如下图示:其中满足条件M={(x,y)|x|+|y|≤1,x,y∈R}的平面区域如图中阴影所示:则圆的面积S圆=π阴影部分的面积S阴影=2故质点落入M中的概率概率P=S阴影S正方形=2π故选D2.已知|a|=8,e是单位向量,当它们之间的夹角为π3时,a在e方向上的投影为()A.43B.4C.42D.8+23答案:由两个向量数量积的几何意义可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故选B3.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B4.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是()A.双曲线B.双曲线右支C.一条射线D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根据双曲线的定义,∴点P是以M(-2,0),N(2,0)为两焦点的双曲线的右支.故选B.5.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,
(Ⅰ)求证:DM⊥EB;
(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22•12+02+
02=13,即cosβ=136.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是
______.答案:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故为:1.2.7.一个试验要求的温度在69℃~90℃之间,用分数法安排试验进行优选,则第一个试点安排在(
)。(取整数值)答案:82°8.从装有2个红球和2个白球的口袋内,任取2个球,那么下面互斥而不对立的两个事件是()
A.恰有1个白球;恰有2个白球
B.至少有1个白球;都是白球
C.至少有1个白球;
至少有1个红球
D.至少有1个白球;
都是红球答案:A9.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()
A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角
B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角
C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角
D.以上都不对答案:B10.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)•(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故选B.11.(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训;
(I)求恰好选到1名曾经参加过技能培训的员工的概率;
(Ⅱ)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X的分布列和数学期望.答案:(I)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从8人中选3个,共有C83=56种结果,满足条件的事件是恰好选到1名曾经参加过技能培训的员工,共有C51C32=15∴恰好选到1名已参加过其他技能培训的员工的概率P=1556(II)随机变量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴随机变量X的分布列是X0123P15615561528528∴X的数学期望是1×1556+2×
1528+3×528=15812.向量a、b满足|a|=1,|b|=2,且a与b的夹角为π3,则|a+2b|=______.答案:∵|a|=1,|b|=2,且a与b的夹角为π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故为:2113.设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.答案:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB为直径的圆与左准线相离.14.设0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,则a2+1、a+1、2a的大小分别为:1.25,1.5,1,又因为0<a<1时,y=logax为减函数,所以p>m>n故选D15.已知点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0),则点E一定落在()A.BC边的垂直平分线上B.BC边的中线所在的直线上C.BC边的高线所在的直线上D.BC边所在的直线上答案:因为点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0)所以,根据平行四边形法则,E一定落在这个平行四边形的起点为A的对角线上,又平行四边形对角线互相平分,所以E一定落在BC边的中线所在的直线上,故选B.16.若a,b∈R,求证:≤+.答案:证明略解析:证明
当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.17.设复数z的实部是
12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.18.已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为______.答案:∵a+2b+3c=6,∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=23时等号成立由此可得:当且仅当a=2,b=1,c=23时,a2+4b2+9c2的最小值为12故为:1219.如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过
B作BD⊥AC于D,BD交⊙O于E点,若AE平分
∠BAD,则∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D20.抛物线x=14ay2的焦点坐标为()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:抛物线x=14ay2可化为:y2=4ax,它的焦点坐标是(a,0)故选B.21.若随机变量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故为:31622.双曲线的实轴长和焦距分别为()
A.
B.
C.
D.答案:C23.若由一个2*2列联表中的数据计算得k2=4.013,那么有()把握认为两个变量有关系.
A.95%
B.97.5%
C.99%
D.99.9%答案:A24.在500个人身上试验某种血清预防感冒的作用,把一年中的记录与另外500个未用血清的人作比较,结果如下:
未感冒
感冒
合计
试验过
252
248
500
未用过
224
276
500
合计
476
524
1000
根据上表数据,算得Χ2=3.14.以下推断正确的是()
A.血清试验与否和预防感冒有关
B.血清试验与否和预防感冒无关
C.通过是否进行血清试验可以预测是否得感冒
D.通过是否得感冒可以推断是否进行了血清试验答案:A25.如图算法输出的结果是______.答案:当I=1时,满足循环的条件,进而循环体执行循环则S=2,I=4;当I=4时,满足循环的条件,进而循环体执行循环则S=4,I=7;当I=7时,满足循环的条件,进而循环体执行循环则S=8,I=10;当I=10时,满足循环的条件,进而循环体执行循环则S=16,I=13;当I=13时,不满足循环的条件,退出循环,输出S值16故为:1626.已知a>0,b>0,直线l与x轴、y轴分别交于A(a,0),B(0,b),且过点(1,2),O为原点.求△OAB面积的最小值.答案:∵a>0,b>0,直线l与x轴、y轴分别交于A(a,0),B(0,b),∴直线l的方程为xa+yb=1,又直线l过点(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面积为:12ab≥12×8=4,当且仅当1a=2b=12,即a=2且b=4时,等号成立.故△OAB面积的最小值是4.27.直线L1:x-y=0与直线L2:x+y-10=0的交点坐标是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A28.如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为______.答案:|x-4|-|x+5|的几何意义就是数轴上的点到4的距离与到-5的距离的差,差的最大值为9,如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为b>9;故为:b>9.29.已知a=0.80.7,b=0.80.9,c=1.20.8,则a、b、c按从小到大的顺序排列为
______.答案:由指数函数y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c30.已知圆台的上下底面半径分别是2cm、5cm,高为3cm,求圆台的体积.答案:∵圆台的上下底面半径分别是2cm、5cm,高为3cm,∴圆台的体积V=13×3×(4π+4π?25π+25π)=39πcm3.31.选修4-5;不等式选讲.
当n>2时,求证:logn(n-1)logn(n+1)<1.答案:∵n>2,∴log(n-1)n>0,log(n+1)n>0,且log(n-1)n≠log(n+1)n,∴log(n-1)n×log(n+1)n<(log(n-1)n+log(n+1)n2)2=(log(n2-1)n2)2<(logn2n2)2=(22)2=1,∴当n>2时,logn(n-1)logn(n+1)<1.32.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S4的概率是()A.13B.12C.34D.14答案:记事件A={△PBC的面积大于S4},基本事件空间是线段AB的长度,(如图)因为S△PBC>S4,则有12BC?PE>14×12BC?AD;化简记得到:PEAD>14,因为PE平行AD则由三角形的相似性PEAD>14;所以,事件A的几何度量为线段AP的长度,因为AP=34AB,所以△PBC的面积大于S4的概率=APAB=34.故选C.33.已知正三角形的外接圆半径为63cm,求它的边长.答案:设正三角形的边长为a,则12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的边长为18cm.34.已知随机变量ξ~N(3,22),若ξ=2η+3,则Dη=()
A.0
B.1
C.2
D.4答案:B35.已知两曲线参数方程分别为x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它们的交点坐标为______.答案:曲线参数方程x=5cosθy=sinθ(0≤θ<π)的直角坐标方程为:x25+y2=1;曲线x=54t2y=t(t∈R)的普通方程为:y2=45x;解方程组:x25+y2=1y2=45x得:x=1y=255∴它们的交点坐标为(1,255).故为:(1,255).36.若O(0,0),A(1,2)且OA′=2OA.则A′点坐标为()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:设A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故选C.37.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;
(1)求双曲线的标准方程;
(2)求弦AB所在直线方程;
(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.38.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s
0
5
9
12
n
5
4
3
2当n=12时,不满足“s<10”,则输出n的值2故为:239.设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点距离为______.答案:由题意知,OM是三角形PF1P的中位线,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故为4.40.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间产品较稳定.答案:(1)因为间隔时间相同,故是系统抽样.(2)茎叶图如下:.(3)因为.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙车间产品较稳定.41.点P(x0,y0)在圆x2+y2=r2内,则直线x0x+y0y=r2和已知圆的公共点的个数为(
)
A.0
B.1
C.2
D.不能确定答案:A42.已知函数f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故为:7243.用秦九韶算法求多项式
在的值.答案:.解析:可根据秦九韶算法原理,将所给多项式改写,然后由内到外逐次计算即可.
而,所以有,,,,,.即.【名师指引】利用秦九韶算法计算多项式值关键是能正确地将所给多项式改写,然后由内到外逐次计算,由于后项计算需用到前项的结果,故应认真、细心,确保中间结果的准确性.44.已知x1,x2,…,xn都是正数,且x1+x2+…+xn=1,求证:
++…+≥n2.答案:证明略解析:证明
++…+=(x1+x2+…+xn)(
++…+)≥=n2.45.引入复数后,数系的结构图为()
A.
B.
C.
D.
答案:A46.已知函数f(x)=2x+a的图象不过第三象限,则常数a的取值范围是
______.答案:函数f(x)=2x+a的图象可根据指数函数f(x)=2x的图象向上(a>0)或者向下(a<0)平移|a|个单位得到,若函数f(x)=2x+a的图象不过第三象限,则只能向上平移或者不平移,因此,a的取值范围是a≥0.故为:a≥0.47.在三棱锥O-ABC中,M,N分别是OA,BC的中点,点G是MN的中点,则OG可用基底{OA,OB,OC}表示成:OG=______.答案:如图,连接ON,在△OBC中,点N是BC中点,则由平行四边形法则得ON=12(OB+OC)在△OMN中,点G是MN中点,则由平行四边形法则得OG=12(OM+ON)=12OM+12ON=14OA+12•12(OB+OC)14(OA+OB+OC),故为:14(OA+OB+OC).48.已知△ABC的顶点坐标为A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,则AD的长为______.答案:D在BC上,且S△ABC=3S△ABD,∴D点为BC边上的三等分点则D点分线段BC所成的比为12则易求出D点坐标为:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故为:3249.已知点P在曲线C1:x216-y29=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由双曲线的知识可知:C1x216-y29=1的两个焦点分别是F1(-5,0)与F2(5,0),且|PF1|+|PF2|=8而这两点正好是两圆(x+5)2+y2=1和(x-5)2+y2=1的圆心,两圆(x+5)2+y2=4和(x-5)2+y2=1的半径分别是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值为:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故选C50.已知圆C:x2+y2-4y-6y+12=0,求:
(1)过点A(3,5)的圆的切线方程;
(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.第3卷一.综合题(共50题)1.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(
)答案:﹣12.设x,y∈R,且满足x2+y2=1,求x+y的最大值为()
A.
B.
C.2
D.1答案:A3.全称命题“任意x∈Z,2x+1是整数”的逆命题是()
A.若2x+1是整数,则x∈Z
B.若2x+1是奇数,则x∈Z
C.若2x+1是偶数,则x∈Z
D.若2x+1能被3整除,则x∈Z
E.若2x+1是整数,则x∈Z答案:A4.在四边形ABCD中有AC=AB+AD,则它的形状一定是______.答案:由向量加法的平行四边形法则及AC=AB+AD,知四边形ABCD为平行四边形,故为:平行四边形.5.在直角三角形ABC中,∠ACB=90°,CD、CE分别为斜边AB上的高和中线,且∠BCD与∠ACD之比为3:1,求证CD=DE.
答案:证明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜边AB上的中线∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC为等腰直角三角形∴CE=DE.6.H:x-y+z=2为坐标空间中一平面,L为平面H上的一直线.已知点P(2,1,1)为L上距离原点O最近的点,则______为L的方向向量.答案:∵x-y+z=2为坐标空间中一平面∴平面的一个法向量是n=(1,-1,1)设直线L的方向向量为d=(2,b,c)∵L在H上,∴d与平面H的法向量n=(1,-1,1)垂直故d•n=0⇒2-b+c=0∵P(2,1,1)为直线L上距离原点O最近的点,∴.OP⊥L故OP•d=0⇒(2,1,1)•(2,b,c)=0⇒4+b+c=0解得b=-1,c=-3故为:(2,-1,-3)7.△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=______.答案:∵△ABC内接于以O为圆心的圆,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故为30°.8.若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是()A.2B.2.5C.5D.10答案:设母线长为l,则S侧=π(1+3)l=4πl.S上底+S下底=π?12+π?32=10π.据题意4πl=20π即l=5,故选C.9.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,则实数λ等于()
A.
B.
C.
D.答案:D10.若实数X、少满足,则的范围是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D11.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因为i=5>4,结束循环,输出结果S=46.故为:46.12.平面向量、的夹角为60°,=(2,0),=1,则=(
)
A.
B.
C.3
D.7答案:B13.若直线l经过原点和点A(-2,-2),则它的斜率为()
A.-1
B.1
C.1或-1
D.0答案:B14.双曲线的渐近线方程是3x±2y=0,则该双曲线的离心率等于______.答案:∵双曲线的渐近线方程是3x±2y=0,∴ba=32,设a=2k,b=3k,则c=13k,∴e=ca=132.:132.15.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c216.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.17.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线18.已知P(B|A)=,P(A)=,则P(AB)=()
A.
B.
C.
D.答案:D19.一个箱中原来装有大小相同的
5
个球,其中
3
个红球,2
个白球.规定:进行一次操
作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白
球,则该球不放回,并另补一个红球放到箱中.”
(1)求进行第二次操作后,箱中红球个数为
4
的概率;
(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为
4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.20.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22
(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.
②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.21.选修4-2:矩阵与变换
已知矩阵M=0110,N=0-110.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.答案:由题设得MN=01100-111=100-1.…(3分)设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),则有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F的方程为2x+y+1=0.
…(10分)22.已知回归直线的斜率的估计值是1.23,样本中心点为(4,5),若解释变量的值为10,则预报变量的值约为()A.16.3B.17.3C.12.38D.2.03答案:设回归方程为y=1.23x+b,∵样本中心点为(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10时,y=12.38故选C.23.椭圆x225+y29=1的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为______.答案:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故为20.24.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则
即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.
(注:本小题结果可用分数表示)答案:(1)该选手进入第四轮才被淘汰的概率.(Ⅱ)该选手至多进入第三轮考核的概率.解析:(Ⅰ)记“该选手能正确回答第轮的问题”的事件为,则,,,,该选手进入第四轮才被淘汰的概率.(Ⅱ)该选手至多进入第三轮考核的概率.25.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(
)
A.4
B.-4
C.-5
D.6答案:A26.如图算法输出的结果是______.答案:当I=1时,满足循环的条件,进而循环体执行循环则S=2,I=4;当I=4时,满足循环的条件,进而循环体执行循环则S=4,I=7;当I=7时,满足循环的条件,进而循环体执行循环则S=8,I=10;当I=10时,满足循环的条件,进而循环体执行循环则S=16,I=13;当I=13时,不满足循环的条件,退出循环,输出S值16故为:1627.已知向量a、b的夹角为60°,且|a|=2,|b|=1,则|a+2b|=______;向量a与向量a+2b的夹角的大小为______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,设向量a与向量a+2b的夹角的大小为θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故为23,30°.28.若点P(a,b)在圆C:x2+y2=1的外部,则直线ax+by+1=0与圆C的位置关系是()
A.相切
B.相离
C.相交
D.相交或相切答案:C29.在空间直角坐标系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()
A.(,,)
B.(,,)
C.(,,)
D.(,,)答案:C30.已知平行直线l1:x-y+1=0与l2:x-y+3=0,求l1与l2间的距离.答案:∵已知平行直线l1:x-y+1=0与l2:x-y+3=0,则l1与l2间的距离d=|3-1|2=2.31.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选择C.32.现有含盐7%的食盐水为200g,需将它制成工业生产上需要的含盐5%以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水xg,则x的取值范围是(
)。答案:(100,400)33.在极坐标系中,曲线ρ=4sinθ和ρcosθ=1相交于点A、B,则|AB|=______.答案:将其化为直角坐标方程为x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,则|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故为:23.34.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+135.直线kx-y+1=3k,当k变动时,所有直线都通过定点
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C36.下面的结论正确的是()A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则答案:算法需每一步都按顺序进行,并且结果唯一,不能保证可逆,故A不正确;一个算法必须在有限步内完成,不然就不是问题的解了,故B不正确;一般情况下,完成一件事情的算法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专利使用权转让合同样本
- 个人借款合同格式示例在线编辑
- 购销合同书写格式
- 设计勘察分包合同协议
- 房屋买卖定金合同判决的借鉴意义
- 高质量手术合同
- 版商品房买卖合同
- 购销合同签订的要求
- 服务合同范本使用攻略
- 金属配件交易协议
- 舞蹈演出编导排练合同模板
- 沪科版2024-2025学年七年级数学上册计算专题训练专题18期末复习-四大必考题型总结(学生版+解析)
- 路灯安装工程项目实施重点、难点和解决方案
- 2024年产品技术秘密保护协议版B版
- 【MOOC】线性代数-同济大学 中国大学慕课MOOC答案
- 第五单元作文 记述与动物的相处 课件七年级语文上册人教版2024
- 大美劳动智慧树知到期末考试答案章节答案2024年江西财经大学
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 劳动教育智慧树知到期末考试答案2024年
- 河南省城市生命线安全工程建设指引V1
- 报价单(报价单模板)
评论
0/150
提交评论