2023年青海交通职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年青海交通职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年青海交通职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年青海交通职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年青海交通职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年青海交通职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台,问此样本若采用简单的随机抽样方法将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号001,002,112…用抽签法做112个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取10次,就得到一个容量为10的样本.2.用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是______.答案:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故为:a、b都不能被2整除.3.两平行直线x+3y-5=0与x+3y-10=0的距离是______.答案:根据题意,得两平行直线x+3y-5=0与x+3y-10=0的距离为d=|-5+10|12+32=102故为:1024.若点P(a,b)在圆C:x2+y2=1的外部,则直线ax+by+1=0与圆C的位置关系是()

A.相切

B.相离

C.相交

D.相交或相切答案:C5.(选做题)圆内非直径的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=14PD,则CD=______.答案:连接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故为:106.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则实数a的取值范围是(

A.a<-7或a>24

B.a=7或a=24

C.-7<a<24

D.-24<a<7答案:C7.设a=20.3,b=0.32,c=log20.3,则用“>”表示a,b,c的大小关系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故为:a>b>c8.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为______.答案:连接AC、BC,则∠ACD=∠ABC,又因为∠ADC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.9.已知x+5y+3z=1,则x2+y2+z2的最小值为______.答案:证明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,则x2+y2+z2的最小值为135,故为:135.10.若实数X、少满足,则的范围是()

A.[0,4]

B.(0,4)

C.(-∝,0]U[4,+∝)

D.(-∝,0)U(4,+∝))答案:D11.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位()

A.南

B.北

C.西

D.下

答案:B12.扇形周长为10,则扇形面积的最大值是()A.52B.254C.252D.102答案:设半径为r,弧长为l,则周长为2r+l=10,面积为s=12lr,因为10=2r+l≥22rl,所以rl≤252,所以s≤254故选B13.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选择C.14.平面α外一点P到平面α内的四边形的四条边的距离都相等,且P在α内的射影在四边形内部,则四边形是()

A.梯形

B.圆外切四边形

C.圆内接四边

D.任意四边形答案:B15.(a+b)6的展开式的二项式系数之和为______.答案:根据二项式系数的性质:二项式系数和为2n所以(a+b)6展开式的二项式系数之和等于26=64故为:64.16.设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.答案:证明:不妨设a≥b≥c>0,∴a2≥b2≥c2,由排序原理:顺序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.当且仅当a=b=c时,等号成立.17.过点P(0,-2)的双曲线C的一个焦点与抛物线x2=-16y的焦点相同,则双曲线C的标准方程是()

A.

B.

C.

D.答案:C18.设、、是三角形的边长,求证:

≥答案:证明见解析解析:证明:由不等式的对称性,不防设≥≥,则≥左式-右式≥≥≥019.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.

B.

C.

D.

答案:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.20.2005年10月,我国载人航天飞船“神六”飞行获得圆满成功.已知“神六”飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200公里、250公里.设地球半径为R公里,则此时飞船轨道的离心率为______.(结果用R的式子表示)答案:(I)设椭圆的方程为x2a2+y2b2=1由题设条件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25则此时飞船轨道的离心率为25225+R故为:25225+R.21.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.22.已知x、y的取值如下表:x0134y2.24.34.86.7从散点图分析,y与x线性相关,且回归方程为y=0.95x+a,则a=______.答案:点(.x,.y)在回归直线上,计算得.x=2,.y=4.5;代入得a=2.6;故为2.6.23.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是()

A.椭圆

B.AB所在直线

C.线段AB

D.无轨迹答案:C24.给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它们的和是()A.1789B.1799C.1879D.1899答案:由题意知本题是一个求和问题,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故选B.25.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(

A.2

B.5

C.2或5

D.或答案:A26.给出下列四个命题,其中正确的一个是()

A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%

B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大

C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越差

D.随机误差e是衡量预报精确度的一个量,它满足E(e)=0答案:D27.已知a,b,c为正数,且两两不等,求证:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:证明:不妨设a>b>c>0,则(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.28.已知函数f(x)=x2+px+q与函数y=f(f(f(x)))有一个相同的零点,则f(0)与f(1)()

A.均为正值

B.均为负值

C.一正一负

D.至少有一个等于0答案:D29.下图是由哪个平面图形旋转得到的(

)答案:A30.书架上有5本数学书,4本物理书,5本化学书,从中任取一本,不同的取法有()A.14B.25C.100D.40答案:由题意,∵书架上有5本数学书,4本物理书,5本化学书,∴从中任取一本,不同的取法有5+4+5=14种故选A.31.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()

A.小前提错

B.结论错

C.正确的

D.大前提错答案:C32.△ABC中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.答案:设最大角为∠A,最小角为∠C,则最大边为a,最小边为c因为A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.33.若数列{an}是等差数列,对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=______时,数列{dn}也是等比数列.答案:在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{cn}是等差数列,则对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn=nC1C2C3Cn时,数列{dn}也是等比数列.故为:nC1C2C3Cn34.已知动点P(x,y)满足(x+2)2+y2-(x-2)2+y2=2,则动点P的轨迹是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即动点P(x,y)到两定点(-2,0),(2,0)的距离之差等于2,由双曲线定义知动点P的轨迹是双曲线的一支(右支).:双曲线的一支(右支).35.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-236.已知A(0,1),B(3,7),C(x,15)三点共线,则x的值是()

A.5

B.6

C.7

D.8答案:C37.设矩阵M=.32-121232.的逆矩阵是M-1=.abcd.,则a+c的值为______.答案:由题意,矩阵M的行列式为.32-121232.=32×32+12×12=1∴矩阵M=.32-121232.的逆矩阵是M-1=.3212-1232.∴a+c=3-12故为3-1238.把矩阵变为后,与对应的值是()

A.

B.

C.

D.答案:C39.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+140.投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标

(1)求点P落在区域C:x2+y2≤10内的概率;

(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.答案:(1)点P的坐标有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9种,其中落在区域C:x2+y2≤10上的点P的坐标有:(0,0),(0,2),(2,0),(2,2),共4种D、故点P落在区域C:x2+y2≤10内的概率为49.(2)区域M为一边长为2的正方形,其面积为4,区域C的面积为10π,则豆子落在区域M上的概率为25π.41.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得Χ2≈3.918,经查对临界值表知P(Χ2≥3.841)≈0.05.则下列结论中,正确结论的序号是______

(1)有95%的把握认为“这种血清能起到预防感冒的作用”

(2)若某人未使用该血清,那么他在一年中有95%的可能性得感冒

(3)这种血清预防感冒的有效率为95%

(4)这种血清预防感冒的有效率为5%答案:查对临界值表知P(Χ2≥3.841)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”950/0仅是指“血清与预防感冒”可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能.故为:(1).42.已知F1=i+2j+3k,F2=2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于一物体上,使物体从点M(1,-2,1)移动到N(3,1,2),则合力所作的功是______.答案:由题意可得F1=(1,2,3)F2=(2,3,-1),F3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F•S=6×2+1×3+7×1=22故为:2243.设求证:答案:证明见解析解析:证明:∵

∴∴,∴本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。44.在市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个甲厂生产的合格灯泡的概率是______.答案:由题意知本题是一个相互独立事件同时发生的概率,∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665故为:0.66545.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=346.△ABC所在平面内点O、P,满足OP=OA+λ(AB+12BC),λ∈[0,+∞),则点P的轨迹一定经过△ABC的()A.重心B.垂心C.内心D.外心答案:设BC的中点为D,则∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中线∴点P的轨迹一定经过△ABC的重心故选A.47.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.48.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)•1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n>1都成立(8分)49.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()

A.

B.

C.

D.答案:A50.已知双曲线x2-y23=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为______.答案:设A(x1,y1)、B(x2,y2),代入双曲线方程x2-y23=1相减得直线AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故为:6第2卷一.综合题(共50题)1.设方程lgx+x=3的实数根为x0,则x0所在的一个区间是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分别画出等式:lgx=3-x两边对应的函数图象:如图.由图知:它们的交点x0在区间(2,3)内,故选B.2.若关于x的方程3x2-5x+a=0的一个根在(-2,0)内,另一个根在(1,3)内,求a的取值范围。答案:解:设f(x)=3x2-5x+a,则f(x)为开口向上的抛物线,如右图所示,∵f(x)=0的两根分别在区间(-2,0),(1,3)内,∴,即,解得-12<a<0,故所求a的取值范围是{a|-12<a<0}。3.四名志愿者和两名运动员排成一排照相,要求两名运动员必须站在一起,则不同的排列方法为()A.A44A22B.A55A22C.A55D.A66A22答案:根据题意,要求两名运动员站在一起,所以使用捆绑法,两名运动员站在一起,有A22种情况,将其当做一个元素,与其他四名志愿者全排列,有A55种情况,结合分步计数原理,其不同的排列方法为A55A22种,故选B.4.若A(x,5-x,2x-1),B(1,x+2,2-x),当||取最小值时,x的值等于(

A.

B.

C.

D.答案:C5.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆.6.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若<n1,n2>=,则二面角A-BD-C的大小为()

A.

B.

C.或

D.或答案:C7.若a、b是直线,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),则α、β所成二面角中较小的一个余弦值为______.答案:由题意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中较小的一个余弦值为1225故为12258.已知圆O的两弦AB和CD延长相交于E,过E点引EF∥CB交AD的延长线于F,过F点作圆O的切线FG,求证:EF=FG.答案:证明:∵FG为⊙O的切线,而FDA为⊙O的割线,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE为公共角∴△EFD∽△AFE,FDEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.9.将函数="2x"+1的图像按向量平移得函数=的图像则

A=(1)B=(1,1)C=()

D(1,1)答案:C解析:分析:本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故=(-1,-1).解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x-h+1+k∴∴∴=(-1,-1)故答案为:C.10.设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)设全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集为:,{﹣5},{},{﹣5,}.11.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B12.为了了解某社区居民是否准备收看奥运会开幕式,某记者分别从社区的60~70岁,40~50岁,20~30岁的三个年龄段中的160,240,X人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()

A.90

B.120

C.180

D.200答案:D13.某小组有3名女生、4名男生,从中选出3名代表,要求至少女生与男生各有一名,共有______种不同的选法.(要求用数字作答)答案:由题意知本题是一个分类计数问题,要求至少女生与男生各有一名有两个种不同的结果,即一个女生两个男生和一个男生两个女生,∴共有C31C42+C32C41=30种结果,故为:3014.命题“存在x0∈R,使x02+1<0”的否定是______.答案:∵命题“存在x0∈R,使x02+1<0”是一个特称命题∴命题“存在x0∈R,使x02+1<0”的否定是“对任意x0∈R,使x02+1≥0”故为:对任意x0∈R,使x02+1≥015.如果直线l1,l2的斜率分别为二次方程x2-4x+1=0的两个根,那么l1与l2的夹角为()

A.

B.

C.

D.答案:A16.设,,,则P,Q,R的大小顺序是(

)

A.P>Q>R

B.P>R>Q

C.Q>P>R

D.Q>R>P答案:B17.(1)把二进制数化为十进制数;(2)把化为二进制数.答案:(1)45,(2)解析:(1)先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果;(2)根据二进制数“满二进一”的原则,可以用连续去除或所得商,然后取余数.(1)(2),,,,.所以..这种算法叫做除2余法,还可以用下面的除法算式表示;把上式中各步所得的余数从下到上排列,得到【名师指引】直接插入排序和冒泡排序是两种常用的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些..18.在极坐标系中,若等边三角形ABC(顶点A,B,C按顺时针方向排列)的顶点A,B的极坐标分别为(2,π6),(2,7π6),则顶点C的极坐标为______.答案:如图所示:由于A,B的极坐标(2,π6),(2,7π6),故极点O为线段AB的中点.故等边三角形ABC的边长为4,AB边上的高(即点C到AB的距离)OC等于23.设点C的极坐标为(23,π6+π2),即(23,2π3),故为(23,2π3).19.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠A,则A∪B≠BD.若A∪B=B,则A∩B=A答案:“若A∪B=A,则A∩B=B”的否命题:“若A∪B≠A则A∩B≠B”故选A.20.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐标系中的图形可能是()A.

B.

C.

D.

答案:∵a>b>1,∴方程y=ax+b的图象与y轴交于y轴的正半轴,且函数是增函数,由此排除选项B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴椭圆焦点在y轴,由此排除A.故选C.21.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.答案::如图可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的体积等于A1B12?AA1=2故为:222.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°23.设a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,则实数m,n的值分别为______.答案:因为a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根据空间向量平行的坐标表示公式,

所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故为:m=12,n=6.24.已知原点O(0,0),则点O到直线4x+3y+5=0的距离等于

______.答案:利用点到直线的距离公式得到d=|5|42+32=1,故为1.25.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<0)=0.2,则P(ξ>4)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:D26.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()

A.100个心脏病患者中至少有99人打酣

B.1个人患心脏病,则这个人有99%的概率打酣

C.100个心脏病患者中一定有打酣的人

D.100个心脏病患者中可能一个打酣的人都没有答案:D27.下列说法中正确的是()

A.以直角三角形的一边为轴旋转所得的旋转体是圆锥

B.以直角梯形的一腰为轴旋转所得的旋转体是圆台

C.圆柱、圆锥、圆台的底面都是圆

D.圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径答案:C28.

若向量,满足||=||=2,与的夹角为60°,则|+|=()

A.

B.2

C.4

D.12答案:B29.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的假设为()

A.a,b,c都是奇数

B.a,b,c都是偶数

C.a,b,c中至少有两个偶数

D.a,b,c中至少有两个偶数或都是奇数答案:D30.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.31.双曲线C的焦点在x轴上,离心率e=2,且经过点P(2,3),则双曲线C的标准方程是______.答案:设双曲线C的标准方程x2a2-y2b2=1,∵经过点P(2,3),∴2a2-3b2=1

①,又∵e=2=a2+b2a

②,由①②联立方程组并解得

a2=1,b2=3,双曲线C的标准方程是x2-y23=1,故为:x2-y23=1.32.设,求证:。答案:证明略解析:证明:因为,所以有。又,故有。…………10分于是有得证。

…………20分33.在极坐标系中,曲线ρ=4sinθ和ρcosθ=1相交于点A、B,则|AB|=______.答案:将其化为直角坐标方程为x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,则|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故为:23.34.参数方程(θ为参数)化为普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D35.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.36.铁路托运行李,从甲地到乙地,按规定每张客票托运行李不超过50kg时,每千克0.2元,超过50kg时,超过部分按每千克0.25元计算,画出计算行李价格的算法框图.答案:程序框图:37.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.38.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型为O型,则其父母血型的所有可能情况有()

A.12种

B.6种

C.10种

D.9种答案:D39.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.123B.363C.273D.6答案:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是33,设底面边长为a,则32a=33,∴a=6,故三棱柱体积V=12?62?32?4=363.故选B40.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于______.答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故为1041.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____42.若图中的直线l1,l2,l3的斜率为k1,k2,k3则()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C43.计算:x10÷x5=______.答案:根据有理数指数幂的运算性质:x10÷x5=x5故为:x544.如图,PA,PB切⊙O于

A,B两点,AC⊥PB,且与⊙O相交于

D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°45.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.46.(选做题)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为(

)。答案:(2.5,2.5)47.设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为,则μ为()

A.1

B.4

C.2

D.不能确定答案:B48.用秦九韶算法求多项式

在的值.答案:.解析:可根据秦九韶算法原理,将所给多项式改写,然后由内到外逐次计算即可.

而,所以有,,,,,.即.【名师指引】利用秦九韶算法计算多项式值关键是能正确地将所给多项式改写,然后由内到外逐次计算,由于后项计算需用到前项的结果,故应认真、细心,确保中间结果的准确性.49.设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为______.答案:∵15000件产品中有1000件次品,从中抽取150件进行检查,∴查得次品数的数学期望为150×100015000=10.故为10.50.设m∈R,向量=(1,m).若||=2,则m等于()

A.1

B.

C.±1

D.±答案:D第3卷一.综合题(共50题)1.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-22.以下关于排序的说法中,正确的是(

)A.排序就是将数按从小到大的顺序排序B.排序只有两种方法,即直接插入排序和冒泡排序C.用冒泡排序把一列数从小到大排序时,最小的数逐趟向上漂浮D.用冒泡排序把一列数从小到大排序时,最大的数逐趟向上漂浮答案:C解析:由冒泡排序的特点知C正确.3.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()

A.2.44

B.3.376

C.2.376

D.2.4答案:C4.集合{1,2,3}的真子集总共有()A.8个B.7个C.6个D.5个答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选B.5.设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=()

A.

B.

C.

D.答案:D6.若a>0,b>0,则不等式-b<aA.<x<0或0<x<

答案:D解析:试题分析:7.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).8.已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=p2于点M,当|FD|=2时,∠AFD=60°.

(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;

(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.答案:(1)设A(x1,x122p),则A处的切线方程为l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ为等腰三角形.由点A,Q,D的坐标可知:D为线段AQ的中点,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)设B(x2,y2)(x2<0),则B处的切线方程为y=x22x-x224联立y=x22x-x224y=x12x-x214得到点P(x1+x22,x1x24),联立y=x12x-x214y=1得到点M(x12+2x1,1).同理N(x22+2x2,1),设h为点P到MN的距离,则S△=12|MN|•h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①设AB的方程为y=kx+b,则b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面积最小,则应k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,则S′△(t)=(3t2-1)(t2+1)t2,所以当t∈(0,33)时,S(t)单调递减;当t∈(33,+∞)时,S(t)单调递增,所以当t=33时,S取到最小值为1639,此时b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面积取得最小值时的x1值为233.9.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()

A.

B.

C.

D.答案:C10.已知三个数a=60.7,b=0.76,c=log0.76,则a,b,c从小到大的顺序为______.答案:因为a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故为c<b<a.11.a=(2,1),b=(3,4),则向量a在向量b方向上的投影为______.答案:根据向量在另一个向量上投影的定义向量a在向量b方向上的投影为a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故为:212.执行如图所示的程序框图,输出的M的值为()

A.17

B.53

C.161

D.485

答案:C13.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α内的三点,设平面α的法向量a=(x,y,z),则x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α•AB=0,α•AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故为2:3:-4.14.若向量的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O为空间任一点),则能使向量成为空间一组基底的关系是()

A.

B.

C.

D.答案:C15.要证明,可选择的方法有以下几种,其中最合理的是()

A.综合法

B.分析法

C.反证法

D.归纳法答案:B16.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位()

A.南

B.北

C.西

D.下

答案:B17.半径为5,圆心在y轴上,且与直线y=6相切的圆的方程为______.答案:如图所示,因为半径为5,圆心在y轴上,且与直线y=6相切,所以可知有两个圆,上圆圆心为(0,11),下圆圆心为(0,1),所以圆的方程为x2+(y-1)2=25或x2+(y-11)2=25.18.在(1+2x)5的展开式中,x2的系数等于______.(用数字作答)答案:由于(1+2x)5的展开式的通项公式为Tr+1=Cr5?(2x)r,令r=2求得x2的系数等于C25×22=40,故为40.19.赋值语句M=M+3表示的意义()

A.将M的值赋给M+3

B.将M的值加3后再赋给M

C.M和M+3的值相等

D.以上说法都不对答案:B20.已知D是△ABC所在平面内一点,,则()

A.

B.

C.=

D.答案:A21.如果如图所示的程序中运行后输出的结果为132,那么在程序While后面的“条件”应为______.答案:第一次循环之后s=12,i=11;第二次循环之后结果是s=132,i=10,已满足题意跳出循环.由于此循环体是当型循环i=12、11都满足条件,i=10不满足条件.故为:i≥1122.下列各个对应中,从A到B构成映射的是()A.

B.

C.

D.

答案:按照映射的定义,A中的任何一个元素在集合B中都有唯一确定的元素与之对应.而在选项A和选项B中,前一个集合中的元素2在后一个集合中没有元素与之对应,故不符合映射的定义.选项C中,前一个集合中的元素1在后一集合中有2个元素和它对应,也不符合映射的定义,只有选项D满足映射的定义,故选D.23.设P是边长为23的正△ABC内的一点,x,y,z是P到三角形三边的距离,则x+y+z的最大值为______.答案:正三角形的边长为a=23,可得它的高等于32a=3∵P是正三角形内部一点∴点P到三角形三边的距离之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,当且仅当x=y=z=1时,x+y+z的最大值为3故为:324.已知函数f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小,则实数a的取值范围______.答案:∵函数f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴实数a的取值范围为(-2,1)故为:(-2,1)25.若由一个2*2列联表中的数据计算得k2=4.013,那么有()把握认为两个变量有关系.

A.95%

B.97.5%

C.99%

D.99.9%答案:A26.ab>0,则①|a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四个式中正确的是()

A.①②

B.②③

C.①④

D.②④答案:C27.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=()A.43B.8C.83D.16答案:抛物线的焦点F(2,0),准线方程为x=-2,直线AF的方程为y=-3(x-2),所以点A(-2,43)、P(6,43),从而|PF|=6+2=8故选B.28.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()

A.长轴在x轴上的椭圆

B.长轴在y轴上的椭圆

C.实轴在x轴上的双曲线

D.实轴在y轴上的双曲线答案:D29.已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且,则的值()

A.3

B.

C.2

D.答案:B30.抛物线y=4x2的焦点坐标为()

A.(1,0)

B.(0,)

C.(0,1)

D.(,0)答案:B31.在下列四个命题中,正确的共有()

①坐标平面内的任何一条直线均有倾斜角和斜率;

②直线的倾斜角的取值范围是[0,π];

③若一条直线的斜率为tanα,则此直线的倾斜角为α;

④若一条直线的倾斜角为α,则此直线的斜率为tanα.

A.0个

B.1个

C.2个

D.3个答案:A32.有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:分析易知当以PP′为正方形的对角线时,所需正方形的包装纸的面积最小,此时边长最小.设此时的正方形边长为x则:(PP′)2=2x2,又因为PP′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故选A33.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()

A.

B.

C.

D.答案:D34.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C35.已知P(B|A)=,P(A)=,则P(AB)等于()

A.

B.

C.

D.答案:C36.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()

A.9

B.18

C.27

D.36答案:B37.1

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为

(1)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;

(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论