2023年青岛职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年青岛职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年青岛职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年青岛职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年青岛职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年青岛职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.曲线的参数方程是(t是参数,t≠0),它的普通方程是()

A.(x-1)2(y-1)=1

B.

C.

D.答案:B2.若关于x的方程x2+ax+a2-1=0有一正根和一负根,则a的取值范围为______.答案:令f(x)=x2+ax+a2-1,∴二次函数开口向上,若方程有一正一负根,则只需f(0)<0,即a2-1<0,∴-1<a<1.故为:-1<a<1.3.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(72,4),则|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依题意可知焦点F(12,0),准线x=-12,延长PM交准线于H点.则|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,94),另一交点(-13,118)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=194.则所求为|PM|+|PA|=194-14=92.故选B.4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7B.6C.5D.3答案:设上底面半径为r,因为圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,所以S侧面积=π(r+3r)l=84π,r=7故选A5.如图,正六边形ABCDEF中,=()

A.

B.

C.

D.

答案:D6.圆x2+y2=1在矩阵10012对应的变换作用下的结果为______.答案:设P(x,y)是圆C:x2+y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵A=10012对应变换作用下新曲线上的对应点,则x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,将x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故为:x2+4y2=1.7.对于直线l的倾斜角α与斜率k,下列说法错误的是()

A.α的取值范围是[0°,180°)

B.k的取值范围是R

C.k=tanα

D.当α∈(90°,180°)时,α越大k越大答案:C8.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:设A(x1,y1),B(x2,y2),根据抛物线定义,x1+x2+p=8,∵AB的中点到y轴的距离是2,∴x1+x22=2,∴p=4;∴抛物线方程为y2=8x故选B9.“a=2”是“直线ax+2y=0平行于直线x+y=1”的(

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件答案:C10.若点A(1,2,3),B(-3,2,7),且AC+BC=0,则点C的坐标为______.答案:设C(x,y,z),则AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故为(-1,2,5)11.某校为提高教学质量进行教改实验,设有试验班和对照班.经过两个月的教学试验,进行了一次检测,试验班与对照班成绩统计如下的2×2列联表所示(单位:人),则其中m=______,n=______.

80及80分以下80分以上合计试验班321850对照班12m50合计4456n答案:由题意,18+m=56,50+50=n,∴m=38.n=100,故为38,010.12.如图,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2的值是______.答案:∵△POF2是面积为3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2为直角三角形,∴a=3+1,故为23.13.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.14.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如图,则a、b、c、d、1之间从小到大的顺序是______.答案:作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<1<d<c故为:b,a,1,d,c15.某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样S=ab+cd+1e来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为()A.aB.bC.cD.d答案:因a,b,cde都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加1的前提下,分母越小时,S的值增长越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1个单位会使得S的值增加最多.故选C.16.设U={三角形},M={直角三角形},N={等腰三角形},则M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故为{等腰直角三角形}17.执行如图所示的程序框图,输出的M的值为()

A.17

B.53

C.161

D.485

答案:C18.圆C1:x2+y2-6x+6y-48=0与圆C2:x2+y2+4x-8y-44=0公切线的条数是()

A.0条

B.1条

C.2条

D.3条答案:C19.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故选A20.以原点为圆心,且截直线3x+4y+15=0所得弦长为8的圆的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦长为8,所以半径是5所求圆的方程是:x2+y2=25故选D.21.若A(-2,3),B(3,-2),C(,m)三点共线

则m的值为()

A.

B.-

C.-2

D.2答案:A22.在y=2x,y=log2x,y=x2,y=cosx这四个函数中,当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立的函数的个数是()A.0B.1C.2D.3答案:当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立,说明函数一个递增的越来越慢的函数或者是一个递减的越来越快的函数或是一个先递增得越来越慢,再递减得越来越快的函数考查四个函数y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是递增得越来越慢型,函数y=cosx在(0,1)是递减得越来越快型,y=2x,y=x2,这两个函数都是递增得越来越快型综上分析知,满足条件的函数有两个故选C23.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,则k的值为(

)A.

233B.7C.-

115D.-

233答案:考点:数量积判断两个平面向量的垂直关系.24.平面向量a与b的夹角为60°,a=(2,0),|b|=1

则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.25.设P是边长为23的正△ABC内的一点,x,y,z是P到三角形三边的距离,则x+y+z的最大值为______.答案:正三角形的边长为a=23,可得它的高等于32a=3∵P是正三角形内部一点∴点P到三角形三边的距离之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,当且仅当x=y=z=1时,x+y+z的最大值为3故为:326.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因为k=5,结束循环,输出结果S=2+4+6+8=20.故为:20.27.一个试验要求的温度在69℃~90℃之间,用分数法安排试验进行优选,则第一个试点安排在(

)。(取整数值)答案:82°28.给出以下变量①吸烟,②性别,③宗教信仰,④国籍,其中属于分类变量的有______.答案:①因为吸烟不是分类变量,是否吸烟才是分类变量,其他②③④属于分类变量.故为:②③④.29.如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB═______.答案:连接OC,BC.∵CD是切线,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直径,∴∠ACB=90°,∴∠CAB=30°故为:30°30.已知函数f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集为R.则实数K的取值范围为______.答案:因为函数f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的几何意义是数轴上的点到-2与到3距离的差再减去3,它的最大值为2,不等式f(x)-g(x)≤K的解集为R.所以K≥2.故为:[2,+∞).31.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.32.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于33.A、B、C、D、E五种不同的商品要在货架上排成一排,其中A、B两种商品必须排在一起,而C、D两种商品不能排在一起,则不同的排法共有______种.答案:先把A、B进行排列,有A22种排法,再把A、B看成一个元素,和E进行排列,有A22种排法,最后再把C、D插入进去,有A23种排法,根据分步计数原理可得A22A22A23=24种排法.故为:2434.直线y=2x+1的参数方程是()

A.(t为参数)

B.(t为参数)

C.(t为参数)

D.(θ为参数)

答案:B35.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.36.在正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值是______.答案:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)设n=(x,y,z)是平面A1BD的一个法向量,则n•A1D=-x-z=0n•BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一个法向量为n=(1,-1,-1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<BC1,n>|=BC1•n|BC1|•n=63∴cosθ=1-sin2θ=33,即直线BC1与平面A1BD所成角的余弦值是33故为:3337.(1)把参数方程(t为参数)x=secty=2tgt化为直角坐标方程;

(2)当0≤t<π2及π≤t<3π2时,各得到曲线的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲线的直角坐标普通方程为x2-y24=1.(2)当0≤t≤π2时,x≥1,y≥0,得到的是曲线在第一象限的部分(包括(1,0)点);当0≤t≤3π2时,x≤-1,y≥0,得到的是曲线在第二象限的部分,(包括(-1,0)点).38.已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______.答案:∵x24+y29=1,F1,F2为椭圆的左右焦点,∴根据椭圆的定义,可得|PF2|+|PF1|=2×2=4故为:439.设集合A={1,3},集合B={1,2,4,5},则集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故选C.40.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5241.设随机变量X~N(μ,δ2),且p(X≤c)=p(X>c),则c的值()

A.0

B.1

C.μ

D.μ答案:C42.若数列{an}是等差数列,对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=______时,数列{dn}也是等比数列.答案:在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{cn}是等差数列,则对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn=nC1C2C3Cn时,数列{dn}也是等比数列.故为:nC1C2C3Cn43.函数y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因为函数y=5x,x∈N+的定义域为正整数集N+,所以当自变量x取1,2,3,4,…时,其相应的函数值y依次是5,52,53,54,….因此,函数y=5x,x∈N+的值域是{5,52,53,54,…}.故选D.44.已知圆锥的母线长与底面半径长之比为3:1,一个正方体有四个顶点在圆锥的底面内,另外的四个顶点在圆锥的侧面上(如图),则圆锥与正方体的表面积之比为(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D45.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.46.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.

(Ⅰ)求他不需要补考就可获得证书的概率;

(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.答案:设“科目A第一次考试合格”为事件A1,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B1,“科目B补考合格”为事件B2.(Ⅰ)不需要补考就获得证书的事件为A1?B1,注意到A1与B1相互独立,根据相互独立事件同时发生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即该考生不需要补考就获得证书的概率为13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即该考生参加考试次数的数学期望为83.47.在下面的图示中,结构图是()

A.

B.

C.

D.

答案:B48.方程4x-3×2x+2=0的根的个数是(

A.0

B.1

C.2

D.3答案:C49.函数y=ax+b与y=logbx且a>0,在同一坐标系内的图象是()A.

B.

C.

D.

答案:∵a>0,则函数y=ax+b为增函数,与y轴的交点为(0,b)当0<b<1时,函数y=ax+b与y轴的交点在原点和(0,1)点之间,y=logbx为减函数,D图满足要求;当b>1时,函数y=ax+b与y轴的交点在(0,1)点上方,y=logbx为增函数,不存在满足条件的图象;故选D50.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()

A.y2=4x或y2=8x

B.y2=2x或y2=8x

C.y2=4x或y2=16x

D.y2=2x或y2=16x答案:C第2卷一.综合题(共50题)1.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()

A.

B.2

C.4

D.12答案:B2.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是______.若用分层抽样方法,则40岁以下年龄段应抽取______人.答案:∵将全体职工随机按1~200编号,并按编号顺序平均分为40组,由分组可知,抽号的间隔为5,∵第5组抽出的号码为22,∴第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).故为:37;203.

如图梯形A1B1C1D1是一平面图形ABCD的斜二侧直观图,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,则四边形ABCD的面积是()

A.10

B.5

C.2

D.10

答案:B4.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____5.算法框图中表示判断的是()A.

B.

C.

D.

答案:∵在算法框图中,表示判断的是菱形,故选B.6.如图,AC、BC分别是直角三角形ABC的两条直角边,且AC=3,BC=4,以AC为直径作圆与斜边AB交于D,则BD=______.答案:连CD,在Rt△ABC中,因为AC、BC的长分别为3cm、4cm,所以AB=5cm,∵AC为直径,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故为:1657.双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.

(Ⅰ)求双曲线的方程;

(Ⅱ)若AP•AQ=0,求直线PQ的方程.答案:解.(Ⅰ)由题意,设曲线的方程为x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以双曲线的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,AP•AQ≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).由方程组x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)设P(x1,y1),Q(x2,y2),则x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP•AQ=0,∴(x1-1,y1)•(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22满足(*)∴直线PQ的方程为x-2y-3=0或x+2y-3=08.有一个质地均匀的正四面体,它的四个面上分别标有1,2,3,4这四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S,则“S恰好为4”的概率为______.答案:由题意知本题是一个古典概型,试验发生包含的事件是抛掷这颗正四面体骰子两次,共有4×4×4=64种结果,满足条件的事件是三次在正四面体底面的数字和为S,S恰好为4,可以列举出这种事件,(1,1,2),(1,2,1),(2,1,1)共有3种结果,根据古典概型概率公式得到P=364,故为:364.9.在空间直角坐标系O-xyz中,点P(4,3,7)关于坐标平面yOz的对称点的坐标为______.答案:设所求对称点为P'(x,y,z)∵关于坐标平面yOz的对称的两个点,它们的纵坐标、竖坐标相等,而横坐标互为相反数,∴x=-4,y=3,z=7即P关于坐标平面yOz的对称点的坐标为P'(-4,3,7)故为:(-4,3,7)10.已知直线l1:y=kx+(k<0=被圆x2+y2=4截得的弦长为,则l1与直线l2:y=(2+)x的夹角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B11.已知,求证:答案:证明略解析:∵

∴①

又∵②

③由①②③得

∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.12.在曲线(t为参数)上的点是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A13.(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为x=ty=t(t为参数)和x=2cosθy=2sinθ(θ为参数),则曲线C1与C2的交点坐标为______.答案:在平面直角坐标系xOy中,曲线C1与C2的普通方程分别为y2=x,x2+y2=2.解方程组y2=xx2

+y2=2

可得x=1y=1,故曲线C1与C2的交点坐标为(1,1),故为(1,1).14.已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为ρcosθ-2ρsinθ+7=0,则圆心到直线距离为

______.答案:由ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2-2x=0⇒(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0⇒x-2y+7=0,∴圆心到直线距离为:d=1-2×0+712+22=855.故为:855.15.函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大a2,则a的值为()A.32B.2C.12或32D.12答案:当a>1时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是增函数,由题意可得a2-a=a2,∴a=32.当1>a>0时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是减函数,由题意可得a-a2=a2,解得

a=12.综上,a的值为12或32故选C.16.在空间坐标中,点B是A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于()

A.

B.

C.2

D.答案:B17.已知0<k<4,直线l1:kx-2y-2k+8=0和直线l:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为______.答案:如图所示:直线l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,过定点B(2,4),与y轴的交点C(0,4-k),直线l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,过定点(2,4),与x轴的交点A(2k2+2,0),由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18时,所求四边形的面积最小,故为18.18.设椭圆=1和x轴正方向的交点为A,和y轴的正方向的交点为B,P为第一象限内椭圆上的点,使四边形OAPB面积最大(O为原点),那么四边形OAPB面积最大值为()

A.ab

B.ab

C.ab

D.2ab答案:B19.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的14,且样本容量是160,则中间一组的频数为()A.32B.0.2C.40D.0.25答案:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为S5S=0.2所以中间一组的频数为160×0.2=32故选A20.若x,y∈R,x>0,y>0,且x+2y=1,则xy的最大值为______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.当且仅当x=2yx+2y=1时,即x=12,y=14时,取等号.故为:18.21.已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3,即:x2+y2+z2的最小值为114.故为:11422.已知复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m=______.答案:当m2-5m+6=0m2-3m≠0时,即m=2或m=3m≠0且m≠3⇒m=2时复数z为纯虚数.故为:2.23.计算:x10÷x5=______.答案:根据有理数指数幂的运算性质:x10÷x5=x5故为:x524.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.

(1)画出执行该问题的程序框图;

(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框图如左图所示.或者,如右图所示:(2)①DO应改为WHILE;

②PRINT

n+1

应改为PRINT

n;

③S=1应改为S=0.25.已知z=1+i,则|z|=______.答案:由z=1+i,所以|z|=12+12=2.故为2.26.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°27.已知按向量平移得到,则

.答案:3解析:由平移公式可得解得.28.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()

A.-1

B.0

C.2

D.-2答案:B29.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45°,腰和上底均为1(如图),则平面图形的实际面积为______.答案:恢复后的原图形为一直角梯形,上底为1,高为2,下底为1+2,S=12(1+2+1)×2=2+2.故为:2+230.直角△PIB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若弧AB等分△POB的面积,且∠AOB=α弧度,则(

A.tanα=α

B.tan=2α

C.sinα=2cosα

D.2sin=cosα答案:B31.函数数列{fn(x)}满足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表达式,并证明你的结论.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用数学归纳法证明:①当n=1时,f1(x)=x1+x22,已知,显然成立②假设当n=K(K∈N*)4时,猜想成立,即fk(x)=x1+kx2则当n=K+1时,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即对n=K+1时,猜想也成立.结合①②可知:猜想fn(x)=x1+nx2对一切n∈N*都成立.32.已知a>0,且a≠1,解关于x的不等式:

答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<033.一个算法的流程图如图所示,则输出的S值为______.答案:根据程序框图,题意为求:s=2+4+6+8,计算得:s=20,故为:20.34.如图,PA,PB切⊙O于

A,B两点,AC⊥PB,且与⊙O相交于

D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°35.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C36.命题“零向量与任意向量共线”的否定为______.答案:命题“零向量与任意向量共线”即“任意向量与零向量共线”,是全称命题,其否定为特称命题:“有的向量与零向量不共线”.故为:“有的向量与零向量不共线”.37.已知全集U=R,A⊆U,B⊆U,如果命题P:2∈A∪B,则命题非P是()A.2∉AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命题P:2∈A∪B,∴┐p为2∈(CUA)∩(CUB)故选C38.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是()

A.(1)的假设错误,(2)的假设正确

B.(1)与(2)的假设都正确

C.(1)的假设正确,(2)的假设错误

D.(1)与(2)的假设都错误答案:A39.将参数方程化为普通方程为(

A.y=x-2

B.y=x+2

C.y=x-2(2≤x≤3)

D.y=x+2(0≤y≤1)答案:C40.一元二次不等式ax2+bx+c≤0的解集是全体实数所满足的条件是(

)

A.

B.

C.

D.答案:D41.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P

F1F2的面积为()

A.

B.1

C.2

D.4答案:B42.求两条平行直线3x-4y-11=0与6x-8y+4=0的距离是()

A.3

B.

C.

D.4答案:B43.已知|a|=8,e是单位向量,当它们之间的夹角为π3时,a在e方向上的投影为

______.答案:a在e方向上的投影为a?e=|a||e|cosπ3=4故为:444.已知正整数指数函数f(x)的图象经过点(3,27),

(1)求函数f(x)的解析式;

(2)求f(5);

(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.答案:(1)设正整数指数函数为f(x)=ax(a>0,a≠1,x∈N+),因为函数f(x)的图象经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,∴f(x)有最小值,最小值是f(1)=3;f(x)无最大值.解析:已知正整数指数函数f(x)的图象经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.45.已知直线方程l1:2x-4y+7=0,l2:x-2y+5=0,则l1与l2的关系()

A.平行

B.重合

C.相交

D.以上答案都不对答案:A46.已知两点A(2,1),B(3,3),则直线AB的斜率为()

A.2

B.

C.

D.-2答案:A47.已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之间的大小关系为()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函数y=f(x)在区间(0,+∞)上是增函数∴|x|越大,函数值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故选A48.若直线l与直线2x+5y-1=0垂直,则直线l的方向向量为______.答案:直线l与直线2x+5y-1=0垂直,所以直线l:5x-2y+k=0,所以直线l的方向向量为:(2,5).故为:(2,5)49.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()

A.

B.

C.

D.

答案:B50.若直线的参数方程为,则直线的斜率为(

)A.B.C.D.答案:D第3卷一.综合题(共50题)1.过P(-1,1),Q(3,9)两点的直线的斜率为(

A.2

B.

C.4

D.答案:A2.在四边形ABCD中有AC=AB+AD,则它的形状一定是______.答案:由向量加法的平行四边形法则及AC=AB+AD,知四边形ABCD为平行四边形,故为:平行四边形.3.已知一个四棱锥的三视图如图所示,则该四棱锥的体积是______.答案:因为三视图复原的几何体是正四棱锥,底面边长为2,高为1,所以四棱锥的体积为13×2×2×1=43.故为:43.4.空间中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,则m=()

A.2

B.3

C.4

D.5答案:C5.若直线x=1的倾斜角为α,则α等于()A.0°B.45°C.90°D.不存在答案:直线x=1与x轴垂直,故直线的倾斜角是90°,故选C.6.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是(

A.

B.

C.

D.答案:B7.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若AC=λAE+μAF,其中λ、μ∈R,则λ+μ=______.答案:解析:设AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故为:43.8.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()

A.

B.0

C.1

D.答案:D9.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.10.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ=______;.答案:∵由题意知该病的发病率为0.02,且每次实验结果都是相互独立的,∴ξ~B(10,0.02),∴由二项分布的方差公式得到Dξ=10×0.02×0.98=0.196.故为:0.19611.一个十二面体共有8个顶点,其中2个顶点处各有6条棱,其它顶点处都有相同的棱,则其它顶点处的棱数为______.答案:此十二面体如右图,数形结合可得则其它顶点处的棱数为4故为412.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥CD.∵∠ABC=90°,∴CD、CB为⊙O的两条切线.∴根据切线长定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故为16.13.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0

(1)证明:1a是f(x)的一个根;(2)试比较1a与c的大小.答案:证明:(1)∵f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,f(x)=0的两个根x1,x2满足x1x2=ca,又f(c)=0,不妨设x1=c∴x2=1a,即1a是f(x)=0的一个根.(2)假设1a<c,又1a>0由0<x<c时,f(x)>0,得f(1a)>0,与f(1a)=0矛盾∴1a≥c又:f(x)=0的两个根不相等∴1a≠c,只有1a>c14.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列答案:由等差数列的定义:从第二项起,以后每一项与前一项的差都相等的数列叫等差数列类比可得:从第二项起,以后每一项与前一项的和都相等的数列叫等和数列故选D15.点P(x0,y0)在圆x2+y2=r2内,则直线x0x+y0y=r2和已知圆的公共点的个数为(

A.0

B.1

C.2

D.不能确定答案:A16.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:5217.已知△ABC是边长为2a的正三角形,那么它的斜二侧所画直观图△A′B′C′的面积为()

A.a2

B.a2

C.a2

D.a2答案:C18.如图,从圆O外一点P引两条直线分别交圆O于点A,B,C,D,且PA=AB,PC=5,CD=9,则AB的长等于______.答案:∵PAB和PBC是圆O的两条割线∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故为:3519.命题“对于正数a,若a>1,则lg

a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为()A.0B.1C.2D.4答案:原命题“对于正数a,若a>1,则lga>0”是真命题;逆命题“对于正数a,若lga>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lga≤0”是真命题;逆否命题“对于正数a,若lga≤0,则a≤1”是真命题.故选D.20.直线y=3的一个单位法向量是______.答案:直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故为:(0,1)21.如图所示,设P为△ABC所在平面内的一点,并且AP=15AB+25AC,则△ABP与△ABC的面积之比等于()A.15B.12C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C22.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为______.答案:方程x2+my2=1变为x2+y21m=1∵焦点在y轴上,长轴长是短轴长的两倍,∴1m=2,解得m=14故应填1423.与向量a=(12,5)平行的单位向量为()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:设与向量a=(12,5)平行的单位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故选C.24.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:2325.在某次数学考试中,考生的成绩X~N(90,100),则考试成绩X位于区间(80,90)上的概率为______.答案:∵考生的成绩X~N(90,100),∴正弦曲线关于x=90对称,根据3?原则知P(80<x<100)=0.6829,∴考试成绩X位于区间(80,90)上的概率为0.3413,故为:0.341326.平面向量的夹角为,则等于(

A.

B.3

C.7

D.79答案:A27.等于()

A.

B.

C.

D.答案:B28.函数f(x)=8xx2+2(x>0)()A.当x=2时,取得最小值83B.当x=2时,取得最大值83C.当x=2时,取得最小值22D.当x=2时,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22当且仅当x=2x即x=2时,取得最大值22故选D.29.如图,在正方体OABC-O1A1B1C1中,棱长为2,E是B1B的中点,则点E的坐标为()

A.(2,2,1)

B.(2,2,)

C.(2,2,)

D.(2,2,)

答案:A30.P是△ABC所在平面上的一点,且满足,若△ABC的面积为1,则△PAB的面积为()

A.

B.

C.

D.答案:B31.若直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为边长的三角形是()

A.锐角三角形

B.直角三角形

C.钝角三角形

D.不能确定答案:B32.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).33.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)这种抽样方法是哪一种?

(2)将这两组数据用茎叶图表示;

(3)将两组数据比较,说明哪个车间产品较稳定.答案:(1)因为间隔时间相同,故是系统抽样.(2)茎叶图如下:.(3)因为.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙车间产品较稳定.34.若P(2,-1)为曲线x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中点,则该弦所在直线的普通方程为______.答案:∵曲线x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)为曲线x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中点,设过点P(2,-1)的弦与(x-1)2+y2=25交于A(x1,y1),B(x2,y2),则x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y

12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴该弦所在直线的普通方程为y+1=x-2,即x-y-3=0.故为:x-y-3=0.35.一动圆与两圆x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线答案:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2-8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r|,|PO|=1+r,则|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选C.36.设A、B、C、D是半径

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论