版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年陕西机电职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设a∈(0,1)∪(1,+∞),对任意的x∈(0,12],总有4x≤logax恒成立,则实数a的取值范围是______.答案:∵a∈(0,1)∪(1,+∞),当0<x≤12时,函数y=4x的图象如下图所示:∵对任意的x∈(0,12],总有4x≤logax恒成立,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=logax的图象与y=4x的图象交于(12,2)点时,a=22,故虚线所示的y=logax的图象对应的底数a应满足22<a<1.故为:(22,1).2.已知a、b是不共线的向量,AB=λa+b,AC=a+μb(λ,μ∈R),则A、B、C三点共线的充要条件是______.答案:由于AB,AC有公共点A,∴若A、B、C三点共线则AB与AC共线即存在一个实数t,使AB=tAC即λ=at1=μt消去参数t得:λμ=1反之,当λμ=1时AB=1μa+b此时存在实数1μ使AB=1μAC故AB与AC共线又由AB,AC有公共点A,∴A、B、C三点共线故A、B、C三点共线的充要条件是λμ=13.如图:在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是线段AB,BC上的点,且EB=FB=1.
(1)求二面角C-DE-C1的大小;
(2)求异面直线EC1与FD1所成角的大小;
(3)求异面直线EC1与FD1之间的距离.答案:(1)以A为原点AB,AD,AA1分别为x轴、y轴、z轴的正向建立空间直角坐标系,则有D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2)(3分)设向量n=(x,y,z)与平面C1DE垂直,则有n⊥DEn⊥EC1⇒3x-3y=0x+3y+2z=0⇒x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),则n0是一个与平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)与平面CDE垂直,∴n0与AA1所成的角θ为二面角C-DE-C1的平面角.(6分)∴cosθ=n0•AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小为arccos63.(8分)(2)设EC1与FD1所成角为β,(1分)则cosβ=EC1•FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故异面直线EC1与FD1所成角的大小为arccos2114(11分)(3)设m=(x,y,z)m⊥EC1m⊥FD1⇒m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)设所求距离为d,则d=|m⋅D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).4.双曲线x225-y29=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是()A.17B.7C.7或17D.2或22答案:由题意,a=5,则由双曲线的定义可知PF1-PF2=±10,∴PF2=2或22,故选D.5.曲线x=sin2ty=sint(t为参数)的普通方程为______.答案:因为曲线x=sin2ty=sint(t为参数)∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故为:x=y2,(-1≤y≤1).6.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差,中位数分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)
(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。7.从直径AB的延长线上取一点C,过点C作该圆的切线,切点为D,若∠ACD的平分线交AD于点E,则∠CED的度数是()
A.30°
B.45°
C.60°
D.随点C的变化而变化答案:B8.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.
答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.9.已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______.答案:∵x24+y29=1,F1,F2为椭圆的左右焦点,∴根据椭圆的定义,可得|PF2|+|PF1|=2×2=4故为:410.设△ABC是边长为1的正三角形,则|CA+CB|=______.答案:∵△ABC是边长为1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故为:311.若一元二次方程x2+(a-1)x+1-a2=0有两个正实数根,则a的取值范围是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C12.设ABC是坐标平面上的一个三角形,P为平面上一点且AP=15AB+25AC,则△ABP的面积△ABC的面积=()A.12B.15C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C13.抛物线x2+y=0的焦点位于()
A.y轴的负半轴上
B.y轴的正半轴上
C.x轴的负半轴上
D.x轴的正半轴上答案:A14.在对两个变量x,y进行线性回归分析时,有下列步骤:
①对所求出的回归直线方程作出解释;
②收集数据(xi,yi),i=1,2,…,n;
③求线性回归方程;
④求相关系数;
⑤根据所搜集的数据绘制散点图.
如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D15.如图,某公司制造一种海上用的“浮球”,它是由两个半球和一个圆柱筒组成.其中圆柱的高为2米,球的半径r为0.5米.
(1)这种“浮球”的体积是多少立方米(结果精确到0.1m3)?
(2)假设该“浮球”的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元.求该“浮球”的建造费用(结果精确到1元).答案:(1)∵球的半径r为0.5米,∴两个半球的体积之和为V球=43πr3=43π?18=16πm3,∵圆柱的高为2米,∴V圆柱=πr2?h=π×14×2=12πm3,∴该“浮球”的体积是:V=V球+V圆柱=23π≈2.1m3;(2)圆柱筒的表面积为2πrh=2πm2;两个半球的表面积为4πr2=πm2,∵圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元,∴该“浮球”的建造费用为2π×20+π×30=70π≈220元.16.设e1,e2为单位向量.且e1、e2的夹角为π3,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为______.答案:∵e1、e2为单位向量,且e1和e2的夹角θ等于π3,∴e1?e2=1×1×cosπ3=12.∵a=e1+3e2,b=2e1,∴a?b=(e1+3e2)?(2e1)=2e12+6e1?e2=2+3=5.∴a在b上的射影为a?b|b|=52,故为52.17.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.18.
若向量
=(3,2),=(0,-1),=(-1,2),则向量2-的坐标坐标是(
)
A.(3,-4)
B.(-3,4)
C.(3,4)
D.(-3,-4)答案:D19.x+y+z=1,则2x2+3y2+z2的最小值为()
A.1
B.
C.
D.答案:C20.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°21.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C22.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()
A.
B.
C.
D.答案:B23.已知a、b、c为某一直角三角形的三条边长,c为斜边.若点(m,n)在直线ax+by+2c=0上,则m2+n2的最小值是______.答案:根据题意可知:当(m,n)运动到原点与已知直线作垂线的垂足位置时,m2+n2的值最小,由三角形为直角三角形,且c为斜边,根据勾股定理得:c2=a2+b2,所以原点(0,0)到直线ax+by+2c=0的距离d=|0+0+2c|a2+b2=2,则m2+n2的最小值为4.故为:4.24.下列命题中,错误的是()
A.平行于同一条直线的两个平面平行
B.平行于同一个平面的两个平面平行
C.一个平面与两个平行平面相交,交线平行
D.一条直线与两个平行平面中的一个相交,则必与另一个相交答案:A25.已知的单调区间;
(2)若答案:(1)(2)证明略解析:(1)对已知函数进行降次分项变形
,得,(2)首先证明任意事实上,而
.26.函数数列{fn(x)}满足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]
(1)求f2(x),f3(x);
(2)猜想fn(x)的表达式,并证明你的结论.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用数学归纳法证明:①当n=1时,f1(x)=x1+x22,已知,显然成立②假设当n=K(K∈N*)4时,猜想成立,即fk(x)=x1+kx2则当n=K+1时,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即对n=K+1时,猜想也成立.结合①②可知:猜想fn(x)=x1+nx2对一切n∈N*都成立.27.在残差分析中,残差图的纵坐标为______.答案:有残差图的定义知道,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值,这样做出的图形称为残差图.故为:残差.28.下列给出的输入语句、输出语句和赋值语句
(1)输出语句INPUT
a;b;c
(2)输入语句INPUT
x=3
(3)赋值语句3=B
(4)赋值语句A=B=2
则其中正确的个数是()
A.0个
B.1个
C.2个
D.3个答案:A29.“cosα=12”是“α=π3”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故选D.30.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=______.答案:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为a2+b2+c22故为:a2+b2+c2231.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=______(用a,b,c表示)答案:在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故为:12a+14b+14c.32.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.
答案:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=π4时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2.故为:2πR233.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k为______答案:由题意知本题是一个系统抽样,总体中个体数是1200,样本容量是40,根据系统抽样的步骤,得到分段的间隔K=120040=30,故为:30.34.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或1235.已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.
(1)求证:M点的轨迹是抛物线,并求出其方程;
(2)大家知道,过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心(定点).受此启发,研究下面问题:
1过(1)中的抛物线的顶点O任意作互相垂直的弦OA、OB,问:弦AB是否经过一个定点?若经过,请求出定点坐标,否则说明理由;2研究:对于抛物线上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?答案:(1)证明:由题意可知:动点M到定点F(1,0)的距离等于M到定直线x=-1的距离根据抛物线的定义可知,M的轨迹是抛物线所以抛物线方程为:y2=4x(2)(i)设A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA•OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直线AB过定点M(1,0),(ii)设p(x0,y0)设AB的方程为y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分别是A,B的纵坐标∵AP⊥PB∴kmax•kmin=-1即y1-y0x1-x0•y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4•y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直线PQ的方程为x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定过点(x0+2,-y0)36.如果命题P:∅∈{∅},命题Q:∅⊂{∅},那么下列结论不正确的是()A.“P或Q”为真B.“P且Q”为假C.“非P”为假D.“非Q”为假答案:命题P:∅∈{∅},命题Q:∅⊂{∅},可直接看出命题Q,命题P都是正确的.故“P或Q”为真.“P且Q”为真.“非P”为假.“非Q”为假.故选B.37.沿着正四面体OABC的三条棱OA、OB、OC的方向有大小等于1、2、3的三个力f1、f2、f3.试求此三个力的合力f的大小以及此合力与三条棱所夹角的余弦.答案:用a、b、c分别代表棱OA、OB、OC上的三个单位向量,则f1=a,f2=2b,f3=3c,则f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小为5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.38.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.
B.
C.
D.
答案:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.39.已知直线的斜率为3,则此直线的倾斜角为()A.30°B.60°C.45°D.120°答案:∵直线的斜率为3,∴直线倾斜角α满足tanα=3结合α∈[0°,180°),可得α=60°故选:B40.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.
(1)建立适当的坐标系,求抛物线C的方程;
(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)41.______称为向量;常用
______表示,记为
______,又可用小写字线表示为
______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有带箭头的线段来表示,记为有向线段AB,②又可用小写字线表示为:a,b,c…,故为:既有大小,又有方向的量;有带箭头的线段,有向线段AB,a,b,c….42.已知:如图,四边形ABCD内接于⊙O,,过A点的切线交CB的延长线于E点,求证:AB2=BE·CD。
答案:证明:连结AC,因为EA切⊙O于A,所以∠EAB=∠ACB,因为,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四边形ABCD内接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。43.将一枚骰子连续抛掷600次,请你估计掷出的点数大于2的大约是______次.答案:一颗骰子是均匀的,当抛这颗骰子时,出现的6个点数是等可能的,将一枚骰子连续抛掷600次,估计每一个嗲回溯出现的次数是100,∴掷出的点数大于2的大约有400次,故为:400.44.设a1,a2,…,an为正数,证明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:证明:∵a1,a2,…,an为正数,∴要证明a1+a2+…+ann≥n1a1+1a2+…+1an,只要证明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴两式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.45.(几何证明选讲选选做题)如图,AC是⊙O的直径,B是⊙O上一点,∠ABC的平分线与⊙O相交于.D已知BC=1,AB=3,则AD=______;过B、D分别作⊙O的切线,则这两条切线的夹角θ=______.答案:∵AC是⊙O的直径,B是⊙O上一点∴∠ABC=90°∵∠ABC的平分线与⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圆周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°设所作的两切线交于点P,连接OB,OD,则可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴点ODPB共圆∴∠P+∠BOD=180°∴∠P=30°故为:2,30°46.方程x2+(m-2)x+5-m=0的两根都大于2,则m的取值范围是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A47.抛物线的顶点在原点,焦点与椭圆=1的一个焦点重合,则抛物线方程是()
A.x2=±8y
B.y2=±8x
C.x2=±4y
D.y2=±4x答案:A48.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
男女总计爱好402060不爱好203050总计6050110为了判断爱好该项运动是否与性别有关,由表中的数据此算得k2≈7.8,因为P(k2≥6.635)≈0.01,所以判定爱好该项运动与性别有关,那么这种判断出错的可能性为______.答案:由题意知本题所给的观测值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴这个结论有0.01=1%的机会说错,故为:1%49.已知平面向量=(3,1),=(x,3),且⊥,则实数x的值为()
A.9
B.1
C.-1
D.-9答案:C50.甲、乙两人对一批圆形零件毛坯进行成品加工.根据需求,成品的直径标准为100mm.现从他们两人的产品中各随机抽取5件,测得直径(单位:mm)如下:
甲:105
102
97
96
100
乙:100
101
102
97
100
(I)分别求甲、乙的样本平均数与方差,并由此估计谁加工的零件较好?
(Ⅱ)若从乙样本的5件产品中再次随机抽取2件,试求这2件产品中至少有一件产品直径为100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,据此估计乙加工的零件好;(Ⅱ)从乙样本的5件产品中再次随机抽取2件的全部结果有如下10种:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).设事件A为“其中至少有一件产品直径为100”,则时间A有7种.故P(A)=710.第2卷一.综合题(共50题)1.若向量{}是空间的一个基底,则一定可以与向量构成空间的另一个基底的向量是()
A.
B.
C.
D.答案:C2.表示随机事件发生的可能性大小的数叫做该事件的______.答案:根据概率的定义:表示随机事件发生的可能性大小的数叫做该事件的概率;一个随机事件发生的可能性很大,那么P的值接近1又不等于1,故为:概率.3.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|等于______.答案:解;∵a,b均为单位向量,∴|a|=1,|b|=1又∵两向量的夹角为60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故为134.已知点A分BC所成的比为-13,则点B分AC所成的比为______.答案:由已知得B是AC的内分点,且2|AB|=|BC|,故B分AC
的比为ABBC=|AB||BC|=12,故为12.5.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.6.函数y=ax2+a与(a≠0)在同一坐标系中的图象可能是()
A.
B.
C.
D.
答案:D7.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,中间的数字表示得分的十位数,下列对乙运动员的判断错误的是()A.乙运动员得分的中位数是28B.乙运动员得分的众数为31C.乙运动员的场均得分高于甲运动员D.乙运动员的最低得分为0分答案:根据题意,可得甲的得分数据:8,14,16,13,23,26,28,30,30,39可得甲得分的平均数是22.7乙的得分数据:12,15,25,24,21,31,36,31,37,44可得乙得分的平均数是27.6,31出现了两次,可得乙得分的众数是1将乙得分数据按从小到大的顺序排列,位于中间的两个数是25和31,故中位数是12(25+31)=28由以上的数据,可得:乙运动员得分的中位数是28,A项是正确的;乙运动员得分的众数为31,B项是正确的;乙运动员的场均得分高于甲运动员,C各项是正确的.而D项因为乙运动员的得分没有0分,故D项错误故选:D8.
如图,已知平行六面体OABC-O1A1B1C1,点G是上底面O1A1B1C1的中心,且,则用
表示向量为(
)
A.
B.
C.
D.
答案:A9.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.10.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()
A.是圆心
B.在圆上
C.在圆内
D.在圆外答案:C11.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()
A.圆
B.椭圆
C.双曲线
D.抛物线答案:B12.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故为:200613.不等式ax2+bx+2>0的解集是(-,),则a+b的值是()
A.10
B.-10
C.14
D.-14答案:D14.已知x+5y+3z=1,则x2+y2+z2的最小值为______.答案:证明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,则x2+y2+z2的最小值为135,故为:135.15.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:1216.设、、为实数,,则下列四个结论中正确的是(
)A.B.C.且D.且答案:D解析:若,则,则.若,则对于二次函数,由可得结论.17.若向量的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O为空间任一点),则能使向量成为空间一组基底的关系是()
A.
B.
C.
D.答案:C18.对于非零的自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴相交于An,Bn两点,若以|AnBn|表示这两点间的距离,则|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值
等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故为:20092010.19.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4096个需经过()A.12小时B.4小时C.3小时D.2小时答案:设共分裂了x次,则有2x=4
096,∴2x=212,又∵每次为15分钟,∴共15×12=180(分钟),即3个小时.故为C20.若一点P的极坐标是(r,θ),则它的直角坐标如何?答案:由题意可知x=rcosθ,y=rsinθ.所以点P的极坐标是(r,θ)的直角坐标为:(rcosθ,rsinθ).21.设空间两个不同的单位向量
a=(x1,y1,0),
b=(x2,y2,0)与向量
c=(1,1,1)的夹角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大小.答案:(1)∵单位向量a=(x1,y1,0)与向量c=(1,1,1)的夹角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°22.已知A、B、C三点共线,A分的比为λ=-,A,B的纵坐标分别为2,5,则点C的纵坐标为()
A.-10
B.6
C.8
D.10答案:D23.
若向量,满足||=||=2,与的夹角为60°,则|+|=()
A.
B.2
C.4
D.12答案:B24.关于如图所示几何体的正确说法为______.
①这是一个六面体;
②这是一个四棱台;
③这是一个四棱柱;
④这是一个四棱柱和三棱柱的组合体;
⑤这是一个被截去一个三棱柱的四棱柱.答案:①因为有六个面,属于六面体的范围,②这是一个很明显的四棱柱,因为侧棱的延长线不能交与一点,所以不正确.③如果把几何体放倒就会发现是一个四棱柱,④可以有四棱柱和三棱柱组成,⑤和④的想法一样,割补方法就可以得到.故为:①③④⑤.25.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等价于或解得或即故不等式的解集为。26.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.27.若数据x1,x2,…,xn的方差为3,数据ax1+b,ax2+b,…,axn+b的标准差为23,则实数a的值为______.答案:数据ax1+b,ax2+b,…,axn+b的方差是数据x1,x2,…,xn的方差的a2倍;则数据ax1+b,ax2+b,…,axn+b的方差为3a2,标准差为3a2=23解得a=±2故为:±228.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依题意得或,即或,解得。29.设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于()
A.0
B.6
C.0或6
D.0或-6答案:C30.若f(x)=x2,则对任意实数x1,x2,下列不等式总成立的是(
)
A.f()≤
B.f()<
C.f()≥
D.f()>答案:A31.设x1、x2、y1、y2是实数,且满足x12+x22≤1,
证明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:证明略解析:分析:要证原不等式成立,也就是证(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)当x12+x22=1时,原不等式成立.……………3分(2)当x12+x22<1时,联想根的判别式,可构造函数f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判别式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由题意x12+x22<1,函数f(x)的图象开口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此抛物线与x轴必有公共点.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分32.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)33.设随机变量X~B(10,0.8),则D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C34.不等式的解集是(
)
A.(-3,2)
B.(2,+∞)
C.(-∞,-3)∪(2,+∞)
D.(-∞,-3)∪(3,+∞)答案:C35.若函数y=f(x)的定义域是[2,4],则y=f(log12x)的定义域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函数y=f(x)的定义域是[2,4],∴y=f(t)的定义域也为[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函数的定义域即解析式中自变量的取值范围,∴y=f(log12x)的定义域为116≤x≤14,即:[116,14].故选C.36.在统计中,样本的标准差可以近似地反映总体的()
A.平均状态
B.频率分布
C.波动大小
D.最大值和最小值答案:C37.一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.答案:根据球的几何特征,一平面截球面产生的截面形状是圆;当平面与圆柱的底面平行时,截圆柱面所产生的截面形状为圆;当平面与圆柱的底面不平行时,截圆柱面所产生的截面形状为椭圆;故为:圆,圆或椭圆38.若随机变量ξ~N(2,9),则随机变量ξ的数学期望c=()
A.4
B.3
C.2
D.1答案:C39.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).40.2010年广州亚运会乒乓球男单决赛中,马龙与王皓在前三局的比分分别是9:11、11:8、11:7,已知马琳与王皓的水平相当,比赛实行“七局四胜”制,即先赢四局者胜,求(1)王皓获胜的概率;
(2)比赛打满七局的概率.(3)记比赛结束时的比赛局数为ξ,求ξ的分布列及数学期望.答案:(1)在马龙先前三局赢两局的情况下,王皓取胜有两种情况.第一种是王皓连胜三局;第二种是在第四到第六局,王皓赢了两局,第七局王皓赢.在第一种情况下王皓取胜的概率为(12)3=18;在第二种情况下王皓取胜的概率为为C23(12)3×12=316,王皓获胜的概率18+316=516;(3分)(2)比赛打满七局有两种结果:马龙胜或王皓胜.记“比赛打满七局,马龙胜”为事件A,则P(A)=C13(12)3×12=316;记“比赛打满七局,王皓胜”为事件B,则P(B)=C23(12)3×12=316;因为事件A、B互斥,所以比赛打满七局的概率为P(A)+P(B)=38.(7分)(3)比赛结束时,比赛的局数为5,6,7,则打完五局马龙获胜的概率为12×12=14;打完六局马琳获胜的概率为C12(12)2×12=14,王皓取胜的概率为(12)3=18;比赛打满七局,马龙获胜的概率为C13(12)3×12=316,王皓取胜的概率为为C23(12)3×12=316;所以ξ的分布列为ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)41.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,∴当接收方收到密文14,9,23,28时,则a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文为6,4,1,7故选C.42.在平行六面体ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,则x+y+z等于______.答案:根据向量的加法法则可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故为:7643.如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为______.答案:|x-4|-|x+5|的几何意义就是数轴上的点到4的距离与到-5的距离的差,差的最大值为9,如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为b>9;故为:b>9.44.圆x2+y2=1上的点到直线x=2的距离的最大值是
______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:345.给出一个程序框图,输出的结果为s=132,则判断框中应填()
A.i≥11
B.i≥10
C.i≤11
D.i≤12
答案:A46.平面直角坐标系中,O为坐标原点,设向量其中,若且0≤μ≤λ≤1,那么C点所有可能的位置区域用阴影表示正确的是()
A.
B.
C.
D.
答案:A47.已知四边形ABCD,
点E、
F、
G、
H分别是AB、BC、CD、DA的中点,
求证:
EF=HG.答案:证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=12AC,EF=12AC,∴EF=HG.48.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ=2即x=2,极点的直角坐标为(0,0),故极点到直线ρcosθ=2的距离为2,故为2.49.如图,△ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,
(1)与向量FE共线的有
______.
(2)与向量DF的模相等的有
______.
(3)与向量ED相等的有
______.答案:(1)∵EF是△ABC的中位线,∴EF∥BC且EF=12BC,则与向量FE共线的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位线,∴DF∥AC且DF=12AC,则与向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位线,∴DE∥AB且DE=12AB,则与向量ED相等的有AF,FB.50.全称命题“任意x∈Z,2x+1是整数”的逆命题是()
A.若2x+1是整数,则x∈Z
B.若2x+1是奇数,则x∈Z
C.若2x+1是偶数,则x∈Z
D.若2x+1能被3整除,则x∈Z
E.若2x+1是整数,则x∈Z答案:A第3卷一.综合题(共50题)1.在下列四个命题中,正确的共有()
①坐标平面内的任何一条直线均有倾斜角和斜率;
②直线的倾斜角的取值范围是[0,π];
③若一条直线的斜率为tanα,则此直线的倾斜角为α;
④若一条直线的倾斜角为α,则此直线的斜率为tanα.
A.0个
B.1个
C.2个
D.3个答案:A2.用反证法证明“a>b”时,反设正确的是()
A.a>b
B.a<b
C.a=b
D.以上都不对答案:D3.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负数根的绝对值比正数根大,那么实数m的取值范围是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A4.若集合A={1,2,3},则集合A的真子集共有()A.3个B.5个C.7个D.8个答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选C.5.利用计算机随机模拟方法计算y=x2与y=4所围成的区域Ω的面积时,可以先运行以下算法步骤:
第一步:利用计算机产生两个在[0,1]区间内的均匀随机数a,b;
第二步:对随机数a,b实施变换:答案:根据题意可得,点落在y=x2与y=4所围成的区域Ω的点的概率是100-34100=66100,矩形的面积为4×4=16,阴影部分的面积为S,则有S16=66100,∴S=10.56.故为:10.56.6.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是______.答案:设所求抛物线方程为y2=ax,依题意42=2a∴a=8,故所求为y2=8x.故为:y2=8x7.一个盒子中装有4张卡片,上面分别写着四个函数:f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是______.答案:要使所得函数为奇函数,取出的两个函数必须是一个奇函数、一个偶函数.而所给的4个函数中,有2个奇函数、2个偶函数.所有的取法种数为C24=6,满足条件的取法有2×2=4种,故所得函数为奇函数的概率是46=23,故为23.8.某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)
2
3
4
5
销售额y(万元)
27
39
48
54
根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()
A.65.5万元
B.66.2万元
C.67.7万元
D.72.0万元答案:A9.如图是《集合》的知识结构图,如果要加入“子集”,那么应该放在()
A.“集合”的下位
B.“含义与表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位
答案:C10.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依题意得或,即或,解得。11.若直线l经过点A(-1,1),且一个法向量为n=(3,3),则直线方程是______.答案:设直线的方向向量m=(1,k)∵直线l一个法向量为n=(3,3)∴m•n=0∴k=-1∵直线l经过点A(-1,1)∴直线l的方程为y-1=(-1)×(x+1)即x+y=0故为x+y=012.在极坐标系中,点(2,)到圆ρ=2cosθ的圆心的距离为()
A.2
B.
C.
D.答案:D13.已知圆C:x2+y2-4y-6y+12=0,求:
(1)过点A(3,5)的圆的切线方程;
(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.14.命题“存在实数x,,使x>1”的否定是()
A.对任意实数x,都有x>1
B.不存在实数x,使x≤1
C.对任意实数x,都有x≤1
D.存在实数x,使x≤1答案:C15.已知l∥α,且l的方向向量为(2,-8,1),平面α的法向量为(1,y,2),则y=______.答案:∵l∥α,∴l的方向向量(2,-8,1)与平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故为12.16.在直径为4的圆内接矩形中,最大的面积是()
A.4
B.2
C.6
D.8答案:D17.(选做题)已知矩阵.122x.的一个特征值为3,求另一个特征值及其对应的一个特征向量.答案:矩阵M的特征多项式为.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因为λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)设λ2=-1对应的一个特征向量为α=xy,则-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1则y=-1,所以矩阵M的另一个特征值为-1,对应的一个特征向量为α=1-1…(10分)18.三棱柱ABC-A1B1C1中,M、N分别是BB1、AC的中点,设,,=,则等于()
A.
B.
C.
D.答案:A19.若2x1+3y1=4,2x2+3y2=4,则过点A(x1,y1),B(x2,y2)的直线方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴点A(x1,y1),B(x2,y2)在直线2x+3y=4上,又因为过两点确定一条直线,故所求直线方程为2x+3y=4故为:2x+3y=420.如图,割线PAB经过圆心O,PC切圆O于点C,且PC=4,PB=8,则△PBC的外接圆的面积为______.答案:∵PC切圆O于点C,∴根据切割线定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55设△PBC的外接圆的半径为R,则455=2R,解得R=25.∴△PBC的外接圆的面积为20π故为:20π21.已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3,即:x2+y2+z2的最小值为114.故为:11422.方程x2+y2=1(xy<0)的曲线形状是()
A.
B.
C.
D.
答案:C23.已知函数①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中对于f(x)定义域内的任意一个自变量x1都存在唯一个个自变量x2,使f(x1)f(x2)=3成立的函数序号是______.答案:根据题意可知:①f(x)=3lnx,x=1时,lnx没有倒数,不成立;②f(x)=3ecosx,任一自变量f(x)有倒数,但所取x】的值不唯一,不成立;③f(x)=3ex,任意一个自变量,函数都有倒数,成立;④f(x)=3cosx,当x=2kπ+π2时,函数没有倒数,不成立.所以成立的函数序号为③故为③24.设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点,已知|a|+|b|=4.
(1)求点p的轨迹方程;
(2)设点p的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以动点P的轨迹M是以点E(-1,0),F(1,0)为焦点,长轴长为4的椭圆.因为c=1,a=2,则b2=a2-c2=3.故动点P的轨迹M方程是x24+y23=1(2)设直线BC的方程x=my+1与(1)中的椭圆方程x24+y23=1联立消去x可得(3m2+4)y2+6my-9=0,设点B(x1,y1),C(x2,y2)则y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4点A到直线BC的距离d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面积最大值为9225.已知空间三点的坐标为A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三点共线,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故为:3;226.若直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为边长的三角形是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不能确定答案:B27.如图所示,设P为△ABC所在平面内的一点,并且AP=15AB+25AC,则△ABP与△ABC的面积之比等于()A.15B.12C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C28.甲乙两人在罚球线投球命中的概率为,甲乙两人在罚球线上各投球一次,则恰好两人都中的概率为()
A.
B.
C.
D.答案:A29.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.30.若圆x2+y2=9上每个点的横坐标不变,纵坐标缩短为原来的,则所得到的曲线的方程是()
A.
B.
C.
D.答案:C31.下列各图象中,哪一个不可能是函数
y=f(x)的图象()A.
B.
C.
D.
答案:函数表示每个输入值对应唯一输出值的一种对应关系.选项D,对于x=1时有两个输出值与之对应,故不是函数图象故选D.32.向量化简后等于()
A.
B.
C.
D.答案:C33.若实数X、少满足,则的范围是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D34.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为三边长的三角形()
A.是锐角三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业内部实验室环境监测的必要性分析
- 商业决策支持系统的嵌入式技术解析
- 2025中国联通楚雄州分公司运营公司招聘26人高频重点提升(共500题)附带答案详解
- 2025中国移动通信集团浙江限公司校园招聘1130人高频重点提升(共500题)附带答案详解
- 2025中国石油辽阳石化分公司高校毕业生招聘93人(辽宁)高频重点提升(共500题)附带答案详解
- 2025中国电建集团昆明勘测设计研究院限公司招聘100人高频重点提升(共500题)附带答案详解
- 板坯连铸机行业相关投资计划提议范本
- 2025中国烟草郑州烟草研究院招聘4人高频重点提升(共500题)附带答案详解
- 2025中国建筑一局(集团)限公司轨道交通项目部总工程师招聘1人高频重点提升(共500题)附带答案详解
- 2025中国交通建设集团限公司招聘200人高频重点提升(共500题)附带答案详解
- 《供应商质量会议》课件
- 高压电缆安装指导书
- 越剧团管理制度
- 2020山东春季高考数字媒体真题
- 任务3干鲍鱼涨发
- 气体检测系统中英文对照外文翻译文献
- 湖北省武汉市洪山区2022-2023学年四年级上学期期末考试科学试题
- 新一代大学英语发展篇综合教程2答案
- 公务员调任(转任)审批表 - 阳春人才网
- 土地利用动态遥感监测规程
- 大班音乐《欢乐颂》课件
评论
0/150
提交评论