版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年湖南财经工业职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A2.下列命题:
①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;
②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;
③两个随机变量相关性越强,则相关系数的绝对值越接近1;
其中正确命题的序号是
______.(写出所有正确命题的序号)答案:①是由于r可能是负值,要改为|r|的值越大,说明模型拟合的效果越好,故①错误,②对分类变量X与Y的随机变量的K2观测值来说,K2越大,“X与Y有关系”可信程度越大;故②正确③两个随机变量相关性越强,则相关系数的绝对值越接近1;故③正确,故为:③3.已知函数y=与y=ax2+bx,则下列图象正确的是(
)
A.
B.
C.
D.
答案:C4.关于直线a,b,c以及平面M,N,给出下面命题:
①若a∥M,b∥M,则a∥b
②若a∥M,b⊥M,则b⊥a
③若a∥M,b⊥M,且c⊥a,c⊥b,则c⊥M
④若a⊥M,a∥N,则M⊥N,
其中正确命题的个数为()
A.0个
B.1个
C.2个
D.3个答案:C5.设ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则a1x1,a2x2,…,anxn的值中,现给出以下结论,其中你认为正确的是______.
①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.答案:由题意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,对于a1x1,a2x2,…,anxn的值中,若①成立,则分母都小于分子,由于分母的平方和为1,故可得a12+a22+…an2大于1,这与已知矛盾,故①不对;若②成立,则分母都大于分子,由于分母的平方和为1,故可得a12+a22+…an2小于1,这与已知矛盾,故②不对;由于③与①两结论互否,故③对④不可能成立,a1x1,a2x2,…,anxn的值中有多于一个的比值大于1是可以的,故不对⑤与②两结论互否,故正确综上③⑤两结论正确故为③⑤6.设a,b,c是正实数,求证:aabbcc≥(abc)a+b+c3.答案:证明:不妨设a≥b≥c>0,则lga≥lgb≥lgc.据排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.7.平行线3x-4y-8=0与6x-8y+3=0的距离为______.答案:6x-8y+3=0可化为3x-4y+32=0,故所求距离为|-8-32|32+(-4)2=1910,故为:19108.已知向量a表示“向东航行1km”,向量b表示“向北航行3km”,则向量a+b表示()A.向东北方向航行2kmB.向北偏东30°方向航行2kmC.向北偏东60°方向航行2kmD.向东北方向航行(1+3)km答案:如图,作OA=a,OB=b.则OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏东30°方向航行2km.故选B.9.如果消息M发生的概率为P(M),那么消息M所含的信息量为I(M)=log2[P(M)+],若小明在一个有4排8列座位的小型报告厅里听报告,则发布的以下4条消费中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C10.用WHILE语句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While
i<=63s=s+2^ii=i+1WendPrint
send11.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()
A.
B.
C.
D.2答案:C12.下面五个命题:(1)所有的单位向量相等;(2)长度不等且方向相反的两个向量不一定是共线向量;(3)由于零向量的方向不确定,故0与任何向量不平行;(4)对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为:______.答案:(1)单位向量指模为1的向量,方向可为任意的,故错误;(2)由共线向量的定义,方向相反的两个向量一定是共线向量,故错误;(3)规定:零向量与任何向量为平行向量,故错误;(4)因为|a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正确故为:(4)13.设复数z=lg(m2-2m-2)+(m2+3m+2)i,试求实数m的取值范围,使得:
(1)z是纯虚数;
(2)z是实数;
(3)z对应的点位于复平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是纯虚数,则可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是实数,则可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i对应的点坐标为(lg(m2-2m-2),m2+3m+2)∴若该对应点位于复平面的第二象限,则可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)14.已知
|x|<a,|y|<a.求证:|xy|<a.答案:证明:∵0<|x|<a,0<|y|<a∴由不等式的性质,可得|xy|<a15.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()
A.一颗是3点,一颗是1点
B.两颗都是2点
C.两颗都是4点
D.一颗是3点,一颗是1点或两颗都是2点答案:D16.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.17.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:31218.探测某片森林知道,可采伐的木材有10万立方米.设森林可采伐木材的年平均增长率为8%,则经过______年,可采伐的木材增加到40万立方米.答案:设经过n年可采伐本材达到40万立方米则有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即经过19年,可采伐的木材增加到40万立方米故为1919.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.20.执行如图的程序框图,若p=15,则输出的n=______.答案:当n=1时,S=2,n=2;当n=2时,S=6,n=3;当n=3时,S=14,n=4;当n=4时,S=30,n=5;故最后输出的n值为5故为:521.两平行直线5x+12y+3=0与10x+24y+5=0间的距离是
______.答案:∵两平行直线
ax+by+m=0
与
ax+by+n=0间的距离是|m-n|a2+b2,5x+12y+3=0即10x+24y+6=0,∴两平行直线5x+12y+3=0与10x+24y+5=0间的距离是|5-6|102+242=1576=126.故为126.22.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C23.已知两定点F1(5,0),F2(-5,0),曲线C上的点P到F1、F2的距离之差的绝对值是8,则曲线C的方程为()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:据双曲线的定义知:P的轨迹是以F1(5,0),F2(-5,0)为焦点,以实轴长为8的双曲线.所以c=5,a=4,b2=c2-a2=9,所以双曲线的方程为:x216-y29=1故选B24.在半径为1的圆内任取一点,以该点为中点作弦,则所做弦的长度超过3的概率是()A.15B.14C.13D.12答案:如图,C是弦AB的中点,在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合条件的点必须在半径为12圆内,则所做弦的长度超过3的概率是P=S小圆S大圆=(12)2ππ=14.故选B.25.方程x2+y2=1(xy<0)的曲线形状是()
A.
B.
C.
D.
答案:C26.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.27.已知a=(5,4),b=(3,2),则与2a-3b同向的单位向量为
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)设与2a-3b平行的单位向量为e=(x,y),则2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故为e=±(55,255)28.一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为()A.圆B.抛物线C.双曲线D.椭圆答案:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与高的夹角的正弦值=rR=12,∴母线与高的夹角是30°.由于平面α与圆锥的轴成45°>30°;则平面α与该圆锥侧面相交的交线为椭圆.故选D.29.已知f(x)=3mx2-2(m+n)x+n(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围为()
A.[,)
B.[,)
C.[,)
D.[,)答案:A30.已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.答案:(Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以△=-12n2+64>0,解得-433<n<433.设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中点坐标为(3n4,n4).由四边形ABCD为菱形可知,点(3n4,n4)在直线y=x+1上,所以n4=3n4+1,解得n=-2.所以直线AC的方程为y=-x-2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以当n=0时,菱形ABCD的面积取得最大值43.31.等腰三角形两腰所在的直线方程是l1:7x-y-9=0,l2:x+y-7=0,它的底边所在直线经过点A(3,-8),求底边所在直线方程.答案:设l1,l2,底边所在直线的斜率分别为k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如图,由等腰三角形性质,可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底边经过点A(3,-8),代入点斜式,得出直线方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)32.已知图所示的矩形,其长为12,宽为5.在矩形内随同地措施1000颗黄豆,数得落在阴影部分的黄豆数为550颗.则可以估计出阴影部分的面积约为______.答案:∵矩形的长为12,宽为5,则S矩形=60∴S阴S矩=S阴60=5501000,∴S阴=33,故:33.33.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()
A.
B.0
C.
D.0或答案:D34.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()
A.10种
B.20种
C.25种
D.32种答案:D35.如果x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是
______.答案:根据题意,x2+ky2=2化为标准形式为x22+y22k=1;根据题意,其表示焦点在y轴上的椭圆,则有2k>2;解可得0<k<1;故为0<k<1.36.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为[
]A
.4
B.1
C.10
D.11答案:D37.设随机变量X服从B(6,),则P(X=3)的值是()
A.
B.
C.
D.答案:B38.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()
A.120
B.240
C.480
D.720答案:C39.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()
A.
B.
C.
D.答案:A40.下列四组函数,表示同一函数的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函数必然具有相同的定义域、值域、对应关系,A中的2个函数的值域不同,B中的2个函数的定义域不同,C中的2个函数的对应关系不同,只有D的2个函数的定义域、值域、对应关系完全相同,故选D.41.已知直线l的参数方程为x=-4+4ty=-1-2t(t为参数),圆C的极坐标方程为ρ=22cos(θ+π4),则圆心C到直线l的距离是______.答案:直线l的普通方程为x+2y+6=0,圆C的直角坐标方程为x2+y2-2x+2y=0.所以圆心C(1,-1)到直线l的距离d=|1-2+6|5=5.故为5.42.将n2个正整数1,2,3,…,n2填入n×n方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方.记f(n)为n阶幻方对角线的和,如右表就是一个3阶幻方,可知f(3)=15,则f(4)=()
816357492A.32B.33C.34D.35答案:由等差数列得前n项和公式可得,所有数之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故选C.43.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:844.点M(4,)化成直角坐标为()
A.(2,)
B.(-2,-)
C.(,2)
D.(-,-2)答案:B45.设集合A={1,3},集合B={1,2,4,5},则集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故选C.46.给出下列四个命题,其中正确的一个是()
A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%
B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大
C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好
D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D47.如图,⊙O中弦AB,CD相交于点P,已知AP=3,BP=2,CP=1,则DP=()
A.3
B.4
C.5
D.6答案:D48.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<π2)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为______.答案:两式ρ=2sinθ与ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交点的极坐标为(2,π4).故为:(2,π4).49.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°50.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B第2卷一.综合题(共50题)1.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.
答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.2.已知向量a与b的夹角为π3,|a|=2,则a在b方向上的投影为______.答案:由投影的定义可得:a在b方向上的投影为:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故为:223.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.4.如图,正六边形ABCDEF中,=()
A.
B.
C.
D.
答案:D5.将3封信投入5个邮筒,不同的投法共有()
A.15
种
B.35
种
C.6
种
D.53种答案:D6.函数y=a|x|(a>1)的图象是()
A.
B.
C.
D.
答案:B7.有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:x=cosθy=22sinθ(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5
不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:a+b+c≤3;
(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)
cos(-45°)=2222-2222∵矩阵M表示变换“顺时针旋转45°”∴矩阵M-1表示变换“逆时针旋转45°”∴M-1=cos45°-sin45°sin45°
cos45°=22-2222
22(Ⅱ)三角形ABC的面积S△ABC=12×(3-1)×2=2,由于△ABC在旋转变换下所得△A1B1C1与△ABC全等,故三角形的面积不变,即S△A1B1C1=2.(2)(Ⅰ)曲线E的普通方程为x2+2y2=1L的参数方程为x=2+tcosαy=tsinα(t为参数)
(Ⅱ)将L的参数方程代入由线E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)证明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3当且仅当a=b=c=1,取等号.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,则2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,当且仅当a=b=1时,c有最大值1.8.解下列关于x的不等式
(1)
(2)答案:(1)(2)原不等式的解集为解析:(1)
解:(2)
解:分析该题要设法去掉绝对值符号,可由去分类讨论当时原不等式等价于
故得不等式的解集为所以原不等式的解集为9.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握说事件A和B有关系,则具体计算出的数据应该是()
A.K2≥6.635
B.K2<6.635
C.K2≥7.879
D.K2<7.879答案:C10.已知A(3,0),B(0,3),O为坐标原点,点C在第一象限内,且∠AOC=60°,设OC=OA+λOB
(λ∈R),则λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=
3tan60°=33又∵|OB|=3∴λ=3故选D.11.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是
______.答案:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故为:1.2.12.集合A={3,2a},B={a,b},若A∩B={2},则A∪B=______.答案:根据题意,若A∩B={2},则2∈A,2∈B,而已知A={3,2a},则必有2a=2,故a=1,又由2∈B,且a=1则b=2,故A∪B={1,2,3},故为{1,2,3}.13.设是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”.那么,下列命题总成立的是A.若成立,则当时,均有成立B.若成立,则当时,均有成立C.若成立,则当时,均有成立D.若成立,则当时,均有成立答案:D解析:若成立,依题意则应有当时,均有成立,故A不成立,若成立,依题意则应有当时,均有成立,故B不成立,因命题“当成立时,总可推出成立”.“当成立时,总可推出成立”.因而若成立,则当时,均有成立,故C也不成立。对于D,事实上,依题意知当时,均有成立,故D成立。14.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是______.答案:设M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故为:(0,-1,0).15.设x1、x2、y1、y2是实数,且满足x12+x22≤1,
证明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:证明略解析:分析:要证原不等式成立,也就是证(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)当x12+x22=1时,原不等式成立.……………3分(2)当x12+x22<1时,联想根的判别式,可构造函数f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判别式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由题意x12+x22<1,函数f(x)的图象开口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此抛物线与x轴必有公共点.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分16.设点P(+,1)(t>0),则||(O为坐标原点)的最小值是()
A.
B.
C.5
D.3答案:A17.根据学过的知识,试把“推理与证明”这一章的知识结构图画出来.答案:根据“推理与证明”这一章的知识可得结构图,如图所示.18.设直角三角形的三边长分别为a,b,c(a<b<c),则“a:b:c=3:4:5”是“a,b,c成等差数列”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件答案:∵直角三角形的三边长分别为a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差数列.即“a:b:c=3:4:5”?“a,b,c成等差数列”.∵直角三角形的三边长分别为a,b,c(a<b<c),a,b,c成等差数列,∴a2+b2=c22b=a+c,∴a2+a2+
c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差数列”?“a:b:c=3:4:5”.故选C.19.参数方程x=3cosθy=4sinθ,(θ为参数)化为普通方程是______.答案:由参数方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化简得x29+y216=1,即为椭圆的普通方程故为:x29+y216=120.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.
①上海地区面积的70%至80%将降雨;
②上海地区下雨的时间在16.8小时至19.2%小时之间;
③上海地区在相似的气候条件下有70%至80%的日子是下雨的;
④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③21.已知平面向量a,b,c满足a+b+c=0,且a与b的夹角为135°,c与b的夹角为120°,|c|=2,则|a|=______.答案:∵a+b+c=0∴三个向量首尾相接后,构成一个三角形且a与b的夹角为135°,c与b的夹角为120°,|c|=2,故所得三角形如下图示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故为:622.如图,PT是⊙O的切线,切点为T,直线PA与⊙O交于A、B两点,∠TPA的平分线分别交直线TA、TB于D、E两点,已知PT=2,PB=3,则PA=______,TEAD=______.答案:由题意,如图可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分线分别交直线TA、TB于D、E两点,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故为433,3223.已知|a|=1,|b|=2,a与b的夹角为60°,则a+b在a方向上的投影为______.答案:∵|a|=1,|b|=2,a与b的夹角为60°,∴a?b=a|×|b|×cos60°=1由此可得(a+b)2=|a|2+2a?b+|b|2=1+2+4=7∴|a+b|=7.设a+b与a的夹角为θ,则∵(a+b)?a=|a|2+a?b=2∴cosθ=(a+b)?a|a+b|?|a|=277,可得向量a+b在a方向上的投影为|a+b|cosθ=7×277=2故为:224.在直角坐标系内,坐标轴上的点构成的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为零}答案:在x轴上的点(x,y),必有y=0;在y轴上的点(x,y),必有x=0,∴xy=0.∴直角坐标系中,x轴上的点的集合{(x,y)|y=0},直角坐标系中,y轴上的点的集合{(x,y)|x=0},∴坐标轴上的点的集合可表示为{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故选C.25.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等价于或解得或即故不等式的解集为。26.已知P是以F1,F2为焦点的椭圆(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为()
A.
B.
C.
D.答案:D27.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.28.设a∈(0,1)∪(1,+∞),对任意的x∈(0,12],总有4x≤logax恒成立,则实数a的取值范围是______.答案:∵a∈(0,1)∪(1,+∞),当0<x≤12时,函数y=4x的图象如下图所示:∵对任意的x∈(0,12],总有4x≤logax恒成立,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=logax的图象与y=4x的图象交于(12,2)点时,a=22,故虚线所示的y=logax的图象对应的底数a应满足22<a<1.故为:(22,1).29.已知=2+i,则复数z=()
A.-1+3i
B.1-3i
C.3+i
D.3-i答案:B30.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量
(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量
(单位:千瓦时)低谷电价(单位:
元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为______元(用数字作答)答案:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1(元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3(元),本月的总电费为118.1+30.3=148.4(元),故为:148.4.31.(本题满分12分)
已知:
求证:答案:.证明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案32.(理)在直角坐标系中,圆C的参数方程是x=2cosθy=2+2sinθ(θ为参数),以原点为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为______.答案:∵直角坐标系中,圆C的参数方程是x=2cosθy=2+2sinθ(θ为参数),∴x2+(y-2)2=4,∵以原点为极点,以x轴正半轴为极轴建立极坐标系,∴圆心坐标(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圆C的圆心极坐标为(2,π2),故为:(2,π2).33.实数系的结构图如图所示,其中1、2、3三个方格中的内容分别为()
A.有理数、零、整数
B.有理数、整数、零
C.零、有理数、整数
D.整数、有理数、零
答案:B34.设f(x)=ex(x≤0)ln
x(x>0),则f[f(13)]=______.答案:因为f(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故为13.35.(1)求过两直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且平行于直线2x-y+7=0的直线方程.
(2)求点A(--2,3)关于直线l:3x-y-1=0对称的点B的坐标.答案:(1)联立两条直线的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1与l2交点坐标是(-1127,-1327).(2)设与直线2x-y+7=0平行的直线l方程为2x-y+c=0因为直线l过l1与l2交点(-1127,-1327).所以c=13所以直线l的方程为6x-3y+1=0.点P(-2,3)关于直线3x-y-1=0的对称点Q的坐标(a,b),则b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,对称点的坐标(10,-1)36.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为()
A.
B.
C.
D.答案:A37.表示随机事件发生的可能性大小的数叫做该事件的______.答案:根据概率的定义:表示随机事件发生的可能性大小的数叫做该事件的概率;一个随机事件发生的可能性很大,那么P的值接近1又不等于1,故为:概率.38.如果命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题中正确的是()
A.曲线C是方程f(x,y)=0的曲线
B.方程f(x,y)=0的每一组解对应的点都在曲线C上
C.不满足方程f(x,y)=0的点(x,y)不在曲线C上
D.方程f(x,y)=0是曲线C的方程答案:C39.盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A与B是否相互独立,说明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.40.如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:B1B∥平面D1AC;
(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D为原点,以DA、DC、DD1所在直线分别为x轴,z轴建立空间直角坐标系D-xyz如图,则有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)证明:设AC∩BD=E,连接D1、E,则有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB⊄平面D1AC,D1E⊂平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),设n=(x,y,z)为平面AB1D1的法向量,n•B1D1=x+y=0,n•D1A=2x-2z=0.于是令x=1,则y=-1,z=1.则n=(1,-1,1)…(8分)同理可以求得平面D1AC的一个法向量m=(1,1,1),…(10分)cos<m,n>=m•n|m||n|=13.∴二面角B1-AD1-C的余弦值为13.…(12分)41.若圆锥的侧面展开图是弧长为2πcm,半径为2cm的扇形,则该圆锥的体积为______cm3.答案:∵圆锥的侧面展开图的弧长为2πcm,半径为2cm,故圆锥的底面周长为2πcm,母线长为2cm则圆锥的底面半径为1,高为1则圆锥的体积V=13?π?12?1=π3.故为:π3.42.已知正方形ABCD的边长为a,则|AC+AD|等于______.答案:∵正方形ABCD的边长为a,∴AC=2a,AC与AD的夹角为45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故为:5a43.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=144.设求证:答案:证明见解析解析:证明:∵
∴∴,∴本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。45.一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4体积V=Sh=12×6×4×4=48cm3故选A46.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:2247.如图1,一个“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,这个几何体的体积为()A.33πB.36πC.23πD.3π答案:由已知中“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,我们可以判断出底面的半径为1,母线长为2,则半圆锥的高为3故V=13×12×π×3=36π故选B48.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求
(1)a•(b+c);
(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a•(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).49.在画两个变量的散点图时,下面哪个叙述是正确的(
)
A.预报变量x轴上,解释变量y轴上
B.解释变量x轴上,预报变量y轴上
C.可以选择两个变量中任意一个变量x轴上
D.可以选择两个变量中任意一个变量y轴上答案:B50.如图,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC的度数为
______度.答案:∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等边三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故为:30.第3卷一.综合题(共50题)1.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,满足条件的X、Y有3对而骰子朝上的点数X、Y共有36对∴概率为336=112故选C.2.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买(
)块肥皂。
A.5
B.2
C.3
D.4答案:D3.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是()
A.-
B.-6
C.6
D.答案:C4.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为
______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).5.圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2交点的直线的直角坐标方程.答案:以有点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0为圆O1的直角坐标方程.….(3分)同理x2+y2+4y=0为圆O2的直角坐标方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圆O1,圆O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.…(10分)6.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=n(n+1)2直接计算.
第一步______;
第二步______;
第三步
输出计算的结果.答案:由条件知构成等差数列,从而前n项和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入计算S=n(n+1)2.故为:取n=100;计算S=n(n+1)2.7.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(
)
A.17
B.18
C.19
D.20答案:C8.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,则λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故为;
11.9.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或1210.已知x,y的取值如下表:
x0134y2.24.34.86.7从散点图分析,y与x线性相关,则回归方程为.y=bx+a必过点______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故样本中心点的坐标为(2,92).故为:(2,92).11.椭圆的两个焦点坐标是()
A.(-3,5),(-3,-3)
B.(3,3),(3,-5)
C.(1,1),(-7,1)
D.(7,-1),(-1,-1)答案:B12.经过两点A(-3,5),B(1,1
)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1
)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.13.设a=0.7,b=0.8,c=log30.7,则()
A.c<b<a
B.c<a<b
C.a<b<c
D.b<a<c答案:B14.命题“存在实数x,,使x>1”的否定是()
A.对任意实数x,都有x>1
B.不存在实数x,使x≤1
C.对任意实数x,都有x≤1
D.存在实数x,使x≤1答案:C15.参数方程(0<θ<2π)表示()
A.双曲线的一支,这支过点(1,)
B.抛物线的一部分,这部分过(1,)
C.双曲线的一支,这支过点(-1,)
D.抛物线的一部分,这部分过(-1,)答案:B16.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,π2)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2>k3>0.当α为钝角时,tanα为负,所以k1=tanα1<0.综上k1<k3<k2,故选A.17.下列在曲线上的点是(
)
A.
B.
C.
D.答案:B18.已知x、y的取值如下表:x0134y2.24.34.86.7从散点图分析,y与x线性相关,且回归方程为y=0.95x+a,则a=______.答案:点(.x,.y)在回归直线上,计算得.x=2,.y=4.5;代入得a=2.6;故为2.6.19.一个容量为n的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n的值为()A.640B.320C.240D.160答案:由频数、频率和样本容量之间的关系得到,40n=0.125,∴n=320.故选B.20.已知复数z=2+i,则z2对应的点在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,则z2=(2+i)2=22+4i+i2=3+4i.所以,复数z2的实部等于3,虚部等于4.所以z2对应的点在第Ⅰ象限.故选A.21.若一元二次方程kx2-4x-5=0
有两个不相等实数根,则k
的取值范围是______.答案:∵kx2-4x-5=0有两个不相等的实数根,∴△=16+20k>0,且k≠0,解得,k>-45且k≠0;故是:k>-45且k≠0.22.选修4-4参数方程与极坐标
在平面直角坐标系xOy中,动圆x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圆心为P(x0,y0),求2x0-y0的取值范围.答案:将圆的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由题设得x0=4cosθy0=3sinθ(θ为参数,θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.23.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.68x+54.6
表中有一个数据模糊不清,请你推断出该数据的值为()A.68B.68.2C.69D.75答案:设表中有一个模糊看不清数据为m.由表中数据得:.x=30,.y=m+3075,由于由最小二乘法求得回归方程y=0.68x+54.6.将x=30,y=m+3075代入回归直线方程,得m=68.故选A.24.用演绎法证明y=x2是增函数时的大前提是______.答案:∵证明y=x2是增函数时,依据的原理就是增函数的定义,∴用演绎法证明y=x2是增函数时的大前提是:增函数的定义故填增函数的定义25.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()
A.是圆心
B.在圆上
C.在圆内
D.在圆外答案:C26.由9个正数组成的矩阵
中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()
A.1个
B.2个
C.3个
D.4个答案:B27.从30个足球中抽取10个进行质量检测,说明利用随机数法抽取这个样本的步骤及公平性.答案:第一步:首先将30个足球编号:00,01,02…29,第二步:在随机数表中随机的选一个数作为开始.第三步:从选定的数字向右读,得到二位数字,将它取出,把大于29的去掉,,按照这种方法继续向右读,取出的二位数若与前面相同,则去掉,依次下去,就得到一个具有10个数据的样本.其公平性在于:第一随机数表中每一个位置上出现的哪一个数都是等可能的,第二从30个个体中抽到那一个个体的号码也是机会均等的,基于以上两点,利用随机数表抽取样本保证了各个个体被抽到的机会是等可能的.28.若某简单组合体的三视图(单位:cm)如图所示,说出它的几何结构特征,并求该几何体的表面积。答案:解:该几何体由球和圆台组成。球的半径为1,圆台的上下底面半径分别为1、4,高为4,母线长为5,S球=4πcm2,S台=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S台=46πcm2。29.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=130.已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=(
)。答案:231.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6答案:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B32.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)33.全称命题“任意x∈Z,2x+1是整数”的逆命题是()
A.若2x+1是整数,则x∈Z
B.若2x+1是奇数,则x∈Z
C.若2x+1是偶数,则x∈Z
D.若2x+1能被3整除,则x∈Z
E.若2x+1是整数,则x∈Z答案:A34.已知有如下两段程序:
问:程序1运行的结果为______.程序2运行的结果为______.
答案:程序1是计数变量i=21开始,不满足i≤20,终止循环,累加变量sum=0,这个程序计算的结果:sum=0;程序2计数变量i=21,开始进入循环,sum=0+21=22,其值大于20,循环终止,累加变量sum从0开始,这个程序计算的是sum=21.故为:0;21.35.已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;
(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;
(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.答案:(Ⅰ)由题设,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)•.(x+yi)=x+3y+(3x-y)i,得关系式x′=x+3yy′=3x-y…(5分)(Ⅱ)设点P(x,y)在直线y=x+1上,则其经变换后的点Q(x',y')满足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故点Q的轨迹方程为y=(2-3)x-23+2…(10分)(3)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件,∴所求直线可设为y=kx+b(k≠0),…(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年甲醇运输服务合同
- 花店开荒保洁施工合同
- 租赁联合中介协议
- 商品房退房合同纠纷处理
- 生态农业观光园施工合同开发商
- 体育场馆新施工合同范本
- 装修工程单位劳动合同
- 博物馆水磨石地面施工合同
- 临沂医疗诊所租赁合同书
- 食品添加剂行业会议场地租赁协议
- 2024版《供电营业规则》学习考试题库500题(含答案)
- 环境工程原理智慧树知到期末考试答案章节答案2024年西华大学
- 现代食品加工技术(食品加工新技术)智慧树知到期末考试答案章节答案2024年中国农业大学
- 教科版小学科学四上《3.6运动的小车》课件
- 型钢悬挑卸料平台施工验收要求
- 学校护校队工作制度
- MOOC 大学生心理健康-厦门大学 中国大学慕课答案
- 师德师风承诺书师德师风个人档案表
- 中医养生祛湿
- 《智能电视技术》 课件全套 丁帮俊 第1-8章 智能电视系统、数字电视基础知识- 电源电路
- 中原石化乙烯压力储罐的设计
评论
0/150
提交评论