2023年浙江长征职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年浙江长征职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年浙江长征职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年浙江长征职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年浙江长征职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年浙江长征职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=______.答案:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+p2=4,∴x=3,故为:3.2.下列给变量赋值的语句正确的是()

A.5=a

B.a+2=a

C.a=b=4

D.a=2*a答案:D3.设a1,a2,…,an为实数,证明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:证明:不妨设a1≤a2≤…≤an,则由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得:a1+a2+…+ann≤a21+a22+…+a2nn.4.由直角△ABC勾上一点D作弦AB的垂线交弦于E,交股的延长线于F,交外接圆于G,求证:EG为EA和EB的比例中项,又为ED和EF的比例中项.

答案:证明:连接GA、GB,则△AGB也是一个直角三角形,因为EG为直角△AGB的斜边AB上的高,所以,EG为EA和EB的比例中项,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代换),故EG也是ED和EF的比例中项.5.直线x=1和函数y=f(x)的图象的公共点的个数为______.答案:由函数定义知当函数在x=1处有定义时,直线x=1和函数y=f(x)的图象的公共点的个数为1,若函数在x=1处有无定义时,直线x=1和函数y=f(x)的图象的公共点的个数为0故线x=1和函数y=f(x)的图象的公共点的个数为0或1故为0或16.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.7.将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.答案:函数解析式是解析:将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.8.(理科)若随机变量ξ~N(2,22),则D(14ξ)的值为______.答案:解;∵随机变量ξ服从正态分布ξ~N(2,22),∴可得随机变量ξ方差是4,∴D(14ξ)的值为142D(ξ)=142×4=14.故为:14.9.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()

A.

B.-

C.2

D.-2答案:B10.用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是______.答案:当n=k时,左边等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),当n=k+1时,左边等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故从“k”到“k+1”的证明,左边需增添的代数式是(2k+1)(2k+2)(k+1)=2(2k+1),故为:2(2k+1).11.若P(2,-1)为曲线x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中点,则该弦所在直线的普通方程为______.答案:∵曲线x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)为曲线x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中点,设过点P(2,-1)的弦与(x-1)2+y2=25交于A(x1,y1),B(x2,y2),则x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y

12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴该弦所在直线的普通方程为y+1=x-2,即x-y-3=0.故为:x-y-3=0.12.过点(1,0)且与直线x-2y-2=0平行的直线方程是()

A.x-2y-1=0

B.x-2y+1=0

C.2x+y-2=0

D.x+2y-1=0答案:A13.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.14.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量

(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量

(单位:千瓦时)低谷电价(单位:

元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为______元(用数字作答)答案:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1(元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3(元),本月的总电费为118.1+30.3=148.4(元),故为:148.4.15.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].16.点P(x0,y0)在圆x2+y2=r2内,则直线x0x+y0y=r2和已知圆的公共点的个数为(

A.0

B.1

C.2

D.不能确定答案:A17.以下四组向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B18.下列函数中,既是偶函数,又在(0,1)上单调递增的函数是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:对于A选项,函数定义域是(0,+∞),故是非奇非偶函数,不合题意,A选项不正确;对于B选项,函数y=x3是一个奇函数,故不是正确选项;对于C选项,函数的定义域是R,是偶函数,且当x∈(0,+∞)时,函数是增函数,故在(0,1)上单调递增,符合题意,故C选项正确;对于D选项,函数y=cos|x|是偶函数,在(0,1)上单调递减,不合题意综上知,C选项是正确选项故选C19.函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大a2,则a的值为()A.32B.2C.12或32D.12答案:当a>1时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是增函数,由题意可得a2-a=a2,∴a=32.当1>a>0时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是减函数,由题意可得a-a2=a2,解得

a=12.综上,a的值为12或32故选C.20.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()

A.24种

B.48种

C.96种

D.144种答案:C21.抛掷3颗质地均匀的骰子,求点数和为8的概率______.答案:由题意总的基本事件数为6×6×6=216种点数和为8的事件包含了向上的点的情况有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四种情况向上点数分别为(1,1,6)的事件包含的基本事件数有3向上点数分别为(1,2,5)的事件包含的基本事件数有6向上点数分别为(2,2,4)的事件包含的基本事件数有3向上点数分别为(2,3,3)的事件包含的基本事件数有3所以点数和为8的事件包含基本事件数是3+6+3+3=15种点数和为8的事件的概率是15216=572故为:572.22.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且满足1对应的元素是4,则这样的映射有()A.2个B.4个C.8个D.9个答案:∵满足1对应的元素是4,集合A中还有两个元素2和3,2可以和4对应,也可以和5对应,3可以和4对应,也可以和5对应,每个元素有两种不同的对应,∴共有2×2=4种结果,故选B.23.有50件产品编号从1到50,现在从中抽取抽取5件检验,用系统抽样确定所抽取的编号为()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D24.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积=______.答案:由题意知,点A在圆上,切线斜率为-1KOA=-121=-12,用点斜式可直接求出切线方程为:y-2=-12(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和52,所以,所求面积为12×52×5=254.25.

已知向量a,b的夹角为,且|a|=2,|b|=1,则向量a与向量2+2b的夹角等于()

A.

B.

C.

D.答案:D26.若双曲线与椭圆x216+y225=1有相同的焦点,与双曲线x22-y2=1有相同渐近线,求双曲线方程.答案:依题意可设所求的双曲线的方程为y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵双曲线与椭圆x216+y225=1有相同的焦点∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴双曲线的方程为y23-x26=1…(13分)27.如图所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不动,当指针恰好落在分界线时,则这次转动无效,重新开始)为一次游戏,记转盘(A)指针所对的数为X转盘(B)指针对的数为Y设X+Yξ,每次游戏得到的奖励分为ξ分.

(1)求X<2且Y>1时的概率

(2)某人玩12次游戏,求他平均可以得到多少奖励分?答案:(1)由几何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;

P(y=1)=13,P(y=2)=12,P(y=3)=16.则P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范围为2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布为:ξ23456P11873613361136112他平均每次可得到的奖励分为Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的奖励分为12×Eξ=50.28.在平面直角坐标系内第二象限的点组成的集合为______.答案:∵平面直角坐标系内第二象限的点,横坐标小于0,纵坐标大于0,∴在平面直角坐标系内第二象限的点组成的集合为{(x,y)|x<0且y>0},故为:{(x,y)|x<0且y>0}.29.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.30.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且|NF|=32|MN|,则∠NMF=()A.π6B.π4C.π3D.5π12答案:设N到准线的距离等于d,由抛物线的定义可得d=|NF|,

由题意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故选A.31.函数f(x)为偶函数,其图象与x轴有四个交点,则该函数的所有零点之和为()A.4B.2C.1D.0答案:因为函数f(x)为偶函数,所以函数图象关于y轴对称.又其图象与x轴有四个交点,所以四个交点关于y轴对称,不妨设四个交点的横坐标为x1,x2,x3,x4,则根据对称性可知x1+x2+x3+x4=0.故选D.32.已知:集合A={x,y},B={2,2y},若A=B,则x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故为:2或633.如图所示,圆的内接△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段BE=()

A.

B.

C.

D.4

答案:B34.如图,PT是⊙O的切线,切点为T,直线PA与⊙O交于A、B两点,∠TPA的平分线分别交直线TA、TB于D、E两点,已知PT=2,PB=3,则PA=______,TEAD=______.答案:由题意,如图可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分线分别交直线TA、TB于D、E两点,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故为433,3235.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).36.已知两个非空集合A、B满足A∪B={1,2,3},则符合条件的有序集合对(A,B)个数是()A.6B.8C.25D.27答案:按集合A分类讨论若A={1,2,3},则B是A的子集即可满足题意,故B有7种情况,即有序集合对(A,B)个数为7若A={1,2,}或{1,3}或{2,3}时,集合B中至少有一个元素,故每种情况下,B都有4种情况,故有序集合对(A,B)个数为4×3=12若A={1}或{3}或{2}时集合中至少有二个元素,故每种情况下,B都有2种情况,故有序集合对(A,B)个数为2×3=6综上,符合条件的有序集合对(A,B)个数是7+12+6=25故选C37.已知正三角形的外接圆半径为63cm,求它的边长.答案:设正三角形的边长为a,则12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的边长为18cm.38.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1539.△ABC所在平面内点O、P,满足OP=OA+λ(AB+12BC),λ∈[0,+∞),则点P的轨迹一定经过△ABC的()A.重心B.垂心C.内心D.外心答案:设BC的中点为D,则∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中线∴点P的轨迹一定经过△ABC的重心故选A.40.已知椭圆的参数方程为(ϕ为参数),点M在椭圆上,点O为原点,则当ϕ=时,OM的斜率为()

A.1

B.2

C.

D.2答案:D41.若函数y=ax(a>1)在[0,1]上的最大值与最小值之和为3,则a=______.答案:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故为:2.42.定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()A.0B.6C.12D.18答案:当x=0时,z=0,当x=1,y=2时,z=6,当x=1,y=3时,z=12,故所有元素之和为18,故选D43.设=(3,4),=(sinα,cosα),且⊥,则tanα的值为()

A.

B.-

C.

D.-答案:D44.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h3=()

A.:1:1

B.:2:2

C.:2:

D.:2:答案:B45.已知直线y=kx+1与椭圆x25+y2m=1恒有公共点,则实数m的取值范围为()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直线y=kx+1恒过点M(0,1)要使直线y=kx+1与椭圆x25+y2m=1恒有公共点,则只要M(0,1)在椭圆的内部或在椭圆上从而有m>0m≠505+1m≤1,解可得m≥1且m≠5故选D.46.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A47.下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一个函数与函数y=x

(x≥0)有相同图象时,这两个函数应是同一个函数.A中的函数和函数y=x

(x≥0)的值域不同,故不是同一个函数.B中的函数和函数y=x

(x≥0)具有相同的定义域、值域、对应关系,故是同一个函数.C中的函数和函数y=x

(x≥0)的值域不同,故不是同一个函数.D中的函数和函数y=x

(x≥0)的定义域不同,故不是同一个函数.综上,只有B中的函数和函数y=x

(x≥0)是同一个函数,具有相同的图象,故选B.48.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,

OE∥AD.

(1)求二面角B-AD-F的大小;

(2)求直线BD与EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小为45°(2)直线BD与EF所成的角的余弦值为解析:(1)∵AD与两圆所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依题意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小为45°;(2)以O为原点,CB、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=

==-.设异面直线BD与EF所成角为,则cos=|cos〈,〉|=.即直线BD与EF所成的角的余弦值为.49.已知l1、l2是过点P(-2,0)的两条互相垂直的直线,且l1、l2与双曲线y2-x2=1各有两个交点,分别为A1、B1和A2、B2.

(1)求l1的斜率k1的取值范围;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+2).联立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根据题意得k12-1≠0,②△1>0,即有12k12-4>0.③完全类似地有1k21-1≠0,④△2>0,即有12•1k21-4>0,⑤从而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦长公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全类似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.从而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).50.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.第2卷一.综合题(共50题)1.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是______.答案:由题意可得2b=2a2+b2=(5)2,解得b=1a=2.故椭圆的标准方程是x24+y2=1或y24+x2=1.故为x24+y2=1或y24+x2=1.2.当太阳光线与水平面的倾斜角为60°时,要使一根长为2m的细杆的影子最长,则细杆与水平地面所成的角为()

A.15°

B.30°

C.45°

D.60°答案:B3.设随机变量x~B(n,p),若Ex=2.4,Dx=1.44则()

A.n=4,p=0.6

B.n=6,p=0.4

C.n=8,p=0.3

D.n=24,p=0.1答案:B4.当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为______.答案:根据圆的参数方程的意义,当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为(4cos2π3,4sin2π3),即(-2,23).故为:(-2,23).5.已知向量i=(1,0),j=(0,1).若向量i+λj与λi+j垂直,则实数λ=______.答案:由题意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj与λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故为:06.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提都错导致结论错答案:A7.已知下列命题(其中a,b为直线,α为平面):

①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;

②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;

③若a∥α,b⊥α,则a⊥b;

④若a⊥b,则过b有且只有一个平面与a垂直.

上述四个命题中,真命题是()A.①,②B.②,③C.②,④D.③,④答案:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故选D.8.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.答案::如图可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的体积等于A1B12?AA1=2故为:29.双曲线的中心在坐标原点,离心率等于2,一个焦点的坐标为(2,0),则此双曲线的渐近线方程是______.答案:∵离心率等于2,一个焦点的坐标为(2,0),∴ca=2,

c=2且焦点在x轴上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以双曲线的渐进方程为y=±3x.故为y=±3x10.已知正数x,y,z满足5x+4y+3z=10.

(1)求证:25x

24y+3z+16y23z+5x+9z25x+4y≥5;

(2)求9x2+9y2+z2的最小值.答案:(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因为5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根据均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即

(x2+y2+z2)≥2,当且仅当x5=y4=z3时,等号成立.综上,9x2+9y2+z2≥2?32=18.11.把函数y=sin(x-)-2的图象经过按平移得到y=sinx的图象,则=(

A.

B.

C.

D.答案:A12.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-313.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:

序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;

(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)14.已知A(3,4,5),B(0,2,1),O(0,0,0),若,则C的坐标是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A15.袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.

(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;

(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;

(Ⅲ)用X表示取出的3个小球上的最大数字,求P(X≥4)的值.答案:(I)记“取出的3个小球上的数字分别为1,2,3”的事件记为A,则P(A)=C12C12C12C310=8120=115;(Ⅱ)记“取出的3个小球上的数字恰有2个相同”的事件记为A,则P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3个小球上的最大数字,则X≥4包含取出的3个小球上的最大数字为4或5两种情况,当取出的3个小球上的最大数字为4时,P(X=4)=C12C26+C22C16C310=36120=310;当取出的3个小球上的最大数字为5时,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.16.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是()

A.椭圆

B.AB所在直线

C.线段AB

D.无轨迹答案:C17.如图,点O是平行六面体ABCD-A1B1C1D1的对角线BD1与A1C的交点,=,=,=,则=()

A.++

B.++

C.--+

D.+-

答案:C18.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[60,70]的汽车大约有()辆.A.90B.80C.70D.60答案:由已知可得样本容量为200,又∵数据落在区间[60,70]的频率为0.04×10=0.4∴时速在[60,70]的汽车大约有200×0.4=80故选B.19.在等腰直角三角形ABC中,若M是斜边AB上的点,则AM小于AC的概率为()A.14B.12C.22D.32答案:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段AC看做区域d,于是AM小于AC的概率为:ACAB=22.故选C.20.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.21.设x,y∈R,且满足x2+y2=1,求x+y的最大值为()

A.

B.

C.2

D.1答案:A22.铁路托运行李,从甲地到乙地,按规定每张客票托运行李不超过50kg时,每千克0.2元,超过50kg时,超过部分按每千克0.25元计算,画出计算行李价格的算法框图.答案:程序框图:23.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关答案:C24.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.25.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于(

A.

B.

C.

D.答案:A26.已知定直线l及定点A(A不在l上),n为过点A且垂直于l的直线,设N为l上任意一点,线段AN的垂直平分线交n于B,点B关于AN的对称点为P,求证:点P的轨迹为抛物线.答案:证明:如图所示,建立平面直角坐标系,并且连结PA,PN,NB.由题意知PB垂直平分AN,且点B关于AN的对称点为P,∴AN也垂直平分PB.∴四边形PABN为菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故点P符合抛物线上点的条件:到定点A的距离和到定直线l的距离相等,∴点P的轨迹为抛物线.27.已知双曲线的两渐近线方程为y=±32x,一个焦点坐标为(0,-26),

(1)求此双曲线方程;

(2)写出双曲线的准线方程和准线间的距离.答案:(1)由题意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故该双曲线的标准方程为y218-x28=1.(2)由(1)得,双曲线的准线方程为y=±1826x;准线间的距离为2a2c=2×1826=182613.28.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件答案:C29.下列命题中正确的是()

A.若,则

B.若,则

.若,则

D.若,则答案:C30.△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=______.答案:∵△ABC内接于以O为圆心的圆,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故为30°.31.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()

A.是圆心

B.在圆上

C.在圆内

D.在圆外答案:C32.若关于x的方程x2-2ax+2+a=0有两个不相等的实根,求分别满足下列条件的a的取值范围.

(1)方程两根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:设f(x)=x2-2ax+2+a,(1)∵两根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。33.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(

A.点在圆上

B.点在圆内

C.点在圆外

D.不能确定答案:C34.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()

A.

B.

C.

D.答案:C35.(文科做)

f(x)=1x

(x<0)(13)x(x≥0),则不等式f(x)≥13的解集是______.答案:x<0时,f(x)=1x≥13,解得x∈?;x≥0时,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.综上所述,不等式f(x)≥13的解集为{x|0≤x≤1}.故为:{x|0≤x≤1}.36.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h3=()

A.:1:1

B.:2:2

C.:2:

D.:2:答案:B37.已知△ABC和点M满足.若存在实数使得成立,则m=()

A.2

B.3

C.4

D.5答案:B38.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有______种(用数字作答).答案:根据题意,将10个名额,分配给7所学校,每校至少有1个名额,可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;相当于用6块档板插在9个间隔中,共有C96=84种不同方法.所以名额分配的方法共有84种.39.对任意的实数k,直线y=kx+1与圆x2+y2=2

的位置关系一定是()

A.相离

B.相切

C.相交但直线不过圆心

D.相交且直线过圆心答案:C40.抛掷两个骰子,若至少有一个1点或一个6点出现,就说这次试验失败.那么,在3次试验中成功2次的概率为()

A.

B.

C.

D.答案:D41.由9个正数组成的矩阵

中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()

A.1个

B.2个

C.3个

D.4个答案:B42.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()A.a<c<bB.b<c<aC.a<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故选D.43.已知直线l过点P(2,1)且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为______.答案:设A(a,0)、B(0,b),a>0,b>0,AB方程为xa+

yb=1,点P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(当且仅当a=4,b=2时,等号成立),故三角形OAB面积S=12

ab≥4,故为4.44.甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是()

A.甲

B.乙

C.甲、乙相同

D.不能确定答案:B45.命题“12既是4的倍数,又是3的倍数”的形式是()A.p∨qB.p∧qC.¬pD.简单命题答案:命题“12既是4的倍数,又是3的倍数”可转化成“12是4的倍数且12是3的倍数”故是p且q的形式;故选B.46.已知f(x)=,a≠b,

求证:|f(a)-f(b)|<|a-b|.答案:证明略解析:方法一

∵f(a)=,f(b)=,∴原不等式化为|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要证|-|<|a-b|成立,只需证(-)2<(a-b)2.即证1+a2+1+b2-2<a2-2ab+b2,即证2+a2+b2-2<a2-2ab+b2.只需证2+2ab<2,即证1+ab<.当1+ab<0时,∵>0,∴不等式1+ab<成立.从而原不等式成立.当1+ab≥0时,要证1+ab<,只需证(1+ab)2<()2,即证1+2ab+a2b2<1+a2+b2+a2b2,即证2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二

∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.47.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.答案:由独立重复试验的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等号在p=q=12时成立,∴Dξ=100×12×12=25,σξ=25=5.故为:12;548.若直线l过抛物线y=ax2(a>0)的焦点,并且与y轴垂直,若l被抛物线截得的线段长为4,则a=______.答案:抛物线方程整理得x2=1ay,焦点(0,14a)l被抛物线截得的线段长即为通径长1a,故1a=4,a=14;故为14.49.已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.答案:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,-4)或B′(3,-9),截得的线段AB的长|AB|=|-4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x-3)+1.解方程组y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程组y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.解法二:由题意,直线l1、l2之间的距离为d=|1-6|2=522,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ=5225=22,故θ=45°.由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:x=3或y=1.解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.两式相减,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②联立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直线l的倾斜角分别为0°或90°.故所求的直线方程为x=3或y=1.50.设D为△ABC的边AB上一点,P为△ABC内一点,且满足AD=23AB,AP=AD+14BC,则S△APDS△ABC=()A.29B.16C.754D.427答案:由题意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故选B.第3卷一.综合题(共50题)1.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且

则满足条件的函数f(x)有()

A.6个

B.10个

C.12个

D.16个答案:C2.已知原点O(0,0),则点O到直线4x+3y+5=0的距离等于

______.答案:利用点到直线的距离公式得到d=|5|42+32=1,故为1.3.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关答案:C4.设A、B、C、D是半径为r的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B5.设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=()

A.

B.

C.

D.答案:D6.算法框图中表示判断的是()A.

B.

C.

D.

答案:∵在算法框图中,表示判断的是菱形,故选B.7.读下面的程序:

上面的程序在执行时如果输入6,那么输出的结果为()

A.6

B.720

C.120

D.1答案:B8.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()A.a<c<bB.b<c<aC.a<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故选D.9.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()

A.0.59

B.0.54

C.0.8

D.0.15答案:A10.使关于的不等式有解的实数的最大值是(

)A.B.C.D.答案:D解析:令则的最大值为。选D。还可用Cauchy不等式。11.已知平面向量.a,b的夹角为60°,.a=(3,1),|b|=1,则|.a+2b|=______.答案:∵平面向量.a,b的夹角为60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故为23.12.已知向量,满足:||=3,||=5,且=λ,则实数λ=()

A.

B.

C.±

D.±答案:C13.已知函数f(x)=x2+2,x≥13x,x<1,则f(f(0))=()A.4B.3C.9D.11答案:因为f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故选B.14.因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?答案:如果样本就是总体,抽样调查就变成普查了,尽管这样确实反映了实际情况,但不是统计的基本思想,其操作性、可行性、人力、物力等方面,都会有制约因素存在,何况有些调查是破坏性的,如考查一批玻璃的抗碎能力,灯泡的使用寿命等,普查就全破坏了.15.某厂2011年的产值为a万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为______万元.答案:2011年产值为a,增长率为7%,2012年产值为a+a×7%=a(1+7%),2013年产值为a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的产值为a(1+7%)11.故为:a(1+7%)11.16.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()

A.是圆心

B.在圆上

C.在圆内

D.在圆外答案:C17.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2010的坐标为______.答案:A=1011,B=20AA=1011

1011

=1021A3=111

121

=1031依此类推A2009=1020101∴A2009B=1020101

20=24018∴OP2010的坐标为(2,4018)故为:(2,4018)18.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.19.一位运动员投掷铅球的成绩是14m,当铅球运行的水平距离是6m时,达到最大高度4m.若铅球运行的路线是抛物线,则铅球出手时距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D20.选做题

已知抛物线,过原点O直线与交于两点。

(1)求的最小值;

(2)求的值答案:解:设直线的参数方程为与抛物线方程

联立得21.下列函数图象中,正确的是()

A.

B.

C.

D.

答案:C22.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2

又M(1,1)为线段AB的中点∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在23.隋机变量X~B(6,),则P(X=3)=()

A.

B.

C.

D.答案:C24.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+125.设点P(+,1)(t>0),则||(O为坐标原点)的最小值是()

A.

B.

C.5

D.3答案:A26.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:221327.设非零向量、、满足||=||=||,+=,则<,>=()

A.150°

B.120°

C.60°

D.30°答案:B28.若对n个向量a1,a2,…,an,存在n个不全为零的实数k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,则称向量a1,a2,…,an为“线性相关”.依此规定,请你求出一组实数k1,k2,k3的值,它能说明a1=(1,0),a2=(1,-1),a3=(2,2)“线性相关”.k1,k2,k3的值分别是______(写出一组即可).答案:设a1=(1,0),a2=(1,-1),a3=(2,2)“线性相关”.则存在实数,k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,则k2=2,k1=-4故为:-4,2,129.设d1与d2都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于d1与d2的叙述正确的是()A.d1=d2B.d1与d2同向C.d1∥d2D.d1与d2有相同的位置向量答案:根据直线的方向向量定义,把直线上的非零向量以及与之共线的非零向量叫做直线的方向向量.因此,线Ax+By+C=0(AB≠0)的方向向量都应该是共线的故选C.30.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<0)=0.2,则P(ξ>4)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:D31.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:

x23456y2.23.85.56.57.0(1)请在给出的坐标系中画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

y=

bx+

a;

(3)估计使用年限为10年时,维修费用为多少?

(参考数值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根据所给的数据,得到对应的点的坐标,写出点的坐标,在坐标系描出点,得到散点图,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴̂b=112.3-5×4×590-5×16=12.310=1.23̂a=5-1.23×4=0.08∴回归直线为y=1.23x+0.08.(3)当x=10时,y=1.23×10+0.08=12.38,所以估计当使用10年时,维修费用约为12.38万元.32.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.

(I)求直线的普通方程和圆的直角坐标方程;

(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)33.已知F1(-8,3),F2(2,3),动点P满足PF1-PF2=10,则点P的轨迹是______.答案:由于两点间的距离|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应是一条射线.故为一条射线.34.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故选A.35.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是

______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>

0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<1236.下列命题错误的是(

)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论