版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年林州建筑职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:
x23456y2.23.85.56.57.0(1)请在给出的坐标系中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
y=
bx+
a;
(3)估计使用年限为10年时,维修费用为多少?
(参考数值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根据所给的数据,得到对应的点的坐标,写出点的坐标,在坐标系描出点,得到散点图,(2)∵5i=1xi2=4+9+16+25+36=90
且.x=4,.y=5,n=5,∴̂b=112.3-5×4×590-5×16=12.310=1.23̂a=5-1.23×4=0.08∴回归直线为y=1.23x+0.08.(3)当x=10时,y=1.23×10+0.08=12.38,所以估计当使用10年时,维修费用约为12.38万元.2.写出系数矩阵为1221,且解为xy=11的一个线性方程组是______.答案:由题意得:线性方程组为:x+2y=32x+y=3解之得:x=1y=1;故所求的一个线性方程组是x+2y=32x+y=3故为:x+2y=32x+y=3.3.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)4.某品牌平板电脑的采购商指导价为每台2000元,若一次采购数量达到一定量,还可享受折扣.如图为某位采购商根据折扣情况设计的算法程序框图,若一次采购85台该平板电脑,则S=______元.答案:分析程序中各变量、各语句,其作用是:表示一次采购共需花费的金额,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故为:15300.5.抛物线y=4x2的焦点坐标是______.答案:由题意可知x2=14y∴p=18∴焦点坐标为(0,116)故为(0,116)6.设O为坐标原点,给定一个定点A(4,3),而点B(x,0)在x正半轴上移动,l(x)表示AB的长,则△OAB中两边长的比值的最大值为()
A.
B.
C.
D.答案:B7.命题“存在x∈Z使x2+2x+m≤0”的否定是()
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.对任意x∈Z使x2+2x+m≤0
D.对任意x∈Z使x2+2x+m>0答案:D8.某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.答案:设ξ表示摸球后所得的奖金数,由于参与者摸取的球上标有数字1000,800,600,0,当摸到球上标有数字0时,可以再摸一次,但奖金数减半,即分别为500,400,300,0.则ξ的所有可能取值为1000,800,600,500,400,300,0.依题意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,则ξ的分布列为∴所求期望值为Eξ=14(1000+800+600)+116(500+400+300+0)=675元.9.不等式|x-500|≤5的解集是______.答案:因为不等式|x-500|≤5,由绝对值不等式的几何意义可知:{x|495≤x≤505}.故为:{x|495≤x≤505}.10.设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数为()
A.1
B.2
C.3
D.4答案:B11.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______.答案:∵同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24,类比到空间有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为a38,故为a38.12.若直线3x+4y+m=0与曲线x=1+cosθy=-2+sinθ(θ为参数)没有公共点,则实数m的取值范围是
______.答案:∵曲线x=1+cosθy=-2+sinθ(θ为参数)的普通方程是(x-1)2+(y+2)2=1则圆心(1,-2)到直线3x+4y+m=0的距离d=|3•1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故为:m>10或m<0.13.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为______.答案:过A点做BC的垂线,垂足为M',当M点落在线段BM'(含M'点不含B点)上时∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,则∠AMB≥90°的概率p=122=14.故为:1414.设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于()
A.0
B.6
C.0或6
D.0或-6答案:C15.若直线的参数方程为,则直线的斜率为(
)A.B.C.D.答案:D16.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ17.两名女生,4名男生排成一排,则两名女生不相邻的排法共有______
种(以数字作答)答案:由题意,先排男生,再插入女生,可得两名女生不相邻的排法共有A44?A25=480种故为:48018.若有以下说法:
①相等向量的模相等;
②若a和b都是单位向量,则a=b;
③对于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,则a∥c.
其中正确的说法序号是()A.①③B.①④C.②③D.③④答案:根据定义,大小相等且方向相同的两个向量相等.因此相等向量的模相等,故①正确;因为单位向量的模等于1,而方向不确定.所以若a和b都是单位向量,则不一定有a=b成立,故②不正确;根据向量加法的三角形法则,可得对于任意的a和b,都有|a+b|≤|a|+|b|成立,当且仅当a和b方向相同时等号成立,故③正确;若b=0,则有a∥b且c∥b,但是a∥c不成立,故④不正确.综上所述,正确的命题是①③故选:A19.中心在坐标原点,离心率为的双曲线的焦点在y轴上,则它的渐近线方程为()
A.
B.
C.
D.答案:D20.过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,则a的值是______.答案:∵过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故为:32.21.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三个向量共面,则实数λ等于
A.
B.
C.
D.答案:D22.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)23.如图,四边形ABCD内接于⊙O,AD:BC=1:2,AB=35,PD=40,则过点P的⊙O的切线长是()A.60B.402C.352D.50答案:作切线PE,由切割线定理知,PE2=PD•PC=PA•PB,所以PAPC=PAPB,又△PAD与△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA•PB=(PB-AB)•PB=(80-35)×80=602,PE=60.故选A.24.设O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同终点的向量
C.相等向量
D.模相等的向量答案:D25.已知P(B|A)=,P(A)=,则P(AB)=()
A.
B.
C.
D.答案:D26.位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()
A.
B.
C.
D.答案:D27.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.
(1)建立适当的坐标系,求抛物线C的方程;
(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)28.(选做题)已知矩阵.122x.的一个特征值为3,求另一个特征值及其对应的一个特征向量.答案:矩阵M的特征多项式为.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因为λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)设λ2=-1对应的一个特征向量为α=xy,则-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1则y=-1,所以矩阵M的另一个特征值为-1,对应的一个特征向量为α=1-1…(10分)29.曲线的参数方程是(t是参数,t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B30.已知a=log132,b=(13)12,c=(23)12,则a,b,c大小关系为______.答案:∵a=log132<log131=0,又∵函数y=x12在(0,+∞)是增函数,∴(23)12>(13)12>0.所以,c>b>a.故为c>b>a.31.已知曲线C的参数方程为x=4t2y=t(t为参数),若点P(m,2)在曲线C上,则m=______.答案:因为曲线C的参数方程为x=4t2y=t(t为参数),消去参数t得:x=4y2;∵点P(m,2)在曲线C上,所以m=4×4=16.故为:16.32.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且
则满足条件的函数f(x)有()
A.6个
B.10个
C.12个
D.16个答案:C33.已知椭圆中心在原点,一个焦点为(3,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是______.答案:根据题意知a=2b,c=3又∵a2=b2+c2∴a2=4
b2=1∴x24+
y2=1故为:∴x24+
y2=1.34.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.
C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A.∵|x-5|+|x+3|≥10,∴当x≥5时,x-5+x+3≥10,∴x≥6;当x≤-3时,有5-x+(-x-3)≥10,∴x≤-4;当-4<x<5时,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴该圆的圆心的直角坐标为(-1,0),∴其极坐标是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依题意,由相交线定理得:AF•FB=DF•FC,∴AF×2=22×22,∴AF=4;又∵CE与圆相切,∴|CE|2=|EB|•|EA|=1×(1+2+4)=7,∴|CE|=7.故为:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.35.已知平面直角坐标系内三点O(0,0),A(1,1),B(4,2)
(Ⅰ)求过O,A,B三点的圆的方程,并指出圆心坐标与圆的半径.
(Ⅱ)求过点C(-1,0)与条件(Ⅰ)的圆相切的直线方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴线段OA中点坐标为(12,12),线段OB的中点坐标为(2,1),kOA=1,kOB=12,∴线段OA垂直平分线的方程为y-12=-(x-12),线段OB垂直平分线的方程为y-1=12(x-2),联立两方程解得:x=4y=-3,即圆心(4,-3),半径r=42+(-3)2=5,则所求圆的方程为x2+y2-8x+6y=0,圆心是(4,-3)、半径r=5;(Ⅱ)分两种情况考虑:当切线方程斜率不存在时,直线x=-1满足题意;当斜率存在时,设为k,切线方程为y=k(x+1),即kx-y+k=0,∴圆心到切线的距离d=r,即|5k+3|k2+1=5,解得:k=815,此时切线方程为y=815(x+1),综上,所求切线方程为x=-1或y=815(x+1).36.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.37.已知在一场比赛中,甲运动员赢乙、丙的概率分别为0.8,0.7,比赛没有平局.若甲分别与乙、丙各进行一场比赛,则甲取得一胜一负的概率是______.答案:根据题意,甲取得一胜一负包含两种情况,甲胜乙负丙,概率为:0.8×0.3=0.24;甲胜丙负乙,概率为:0.2×0.7=0.14;∴甲取得一胜一负的概率为0.24+0.14=0.38故为0.3838.若函数y=ax(a>1)在[0,1]上的最大值与最小值之和为3,则a=______.答案:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故为:2.39.设a=(x,y,3),b=(3,3,5),且a⊥b,则x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a•b=3x+3y+15=0,∴x+y=-5,故选
C.40.在某项体育比赛中,七位裁判为一选手打出的分数如下:
90
89
90
95
93
94
93
去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B41.如图,D、E分别在AB、AC上,下列条件不能判定△ADE与△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C42.下面程序运行后,输出的值是()
A.42
B.43
C.44
D.45
答案:C43.在某次数学考试中,考生的成绩X~N(90,100),则考试成绩X位于区间(80,90)上的概率为______.答案:∵考生的成绩X~N(90,100),∴正弦曲线关于x=90对称,根据3?原则知P(80<x<100)=0.6829,∴考试成绩X位于区间(80,90)上的概率为0.3413,故为:0.341344.方程4x-3×2x+2=0的根的个数是(
)
A.0
B.1
C.2
D.3答案:C45.设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为______.答案:∵双曲线的渐近线方程是2x±3y=0,∴知焦点是在x轴时,ba=23,设a=3k,b=2k,则c=13k,∴e=133.焦点在y轴时ba=32,设a=2k,b=3k,则c=13k,∴e=132.故为:133或13246.已知
p:所有国产手机都有陷阱消费,则¬p是()
A.所有国产手机都没有陷阱消费
B.有一部国产手机有陷阱消费
C.有一部国产手机没有陷阱消费
D.国外产手机没有陷阱消费答案:C47.过点A(3,5)作圆C:(x-2)2+(y-3)2=1的切线,则切线的方程为______.答案:由圆的一般方程可得圆的圆心与半径分别为:(2,3);1,当切线的斜率存在,设切线的斜率为k,则切线方程为:kx-y-3k+5=0,由点到直线的距离公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切线方程为:3x+4y-29=0;当切线的斜率不存在时,直线为:x=3,满足圆心(2,3)到直线x=3的距离为圆的半径1,x=3也是切线方程;故为:3x+4y-29=0或x=3.48.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为______.答案:因为A(0,4)和点B(1,2),所以直线AB的斜率k=2-41-0=-2故为:-249.已知A(-1,2),B(2,-2),则直线AB的斜率是()
A.
B.
C.
D.答案:A50.两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=______;答案:由题意知ξ的取值有0,1,2,当ξ=0时,即A邮箱的信件数为0,由分步计数原理知两封信随机投入A、B、C三个空邮箱,共有3×3种结果,而满足条件的A邮箱的信件数为0的结果数是2×2,由古典概型公式得到ξ=0时的概率,同理可得ξ=1时,ξ=2时,ξ=3时的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故为:23.第2卷一.综合题(共50题)1.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为(
)
A.
B.
C.3
D.2答案:C2.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.3.为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高如下表所示:
母亲身x(cm)159160160163159154159158159157女儿身Y(cm)158159160161161155162157162156计算x与Y的相关系数r≈0.71,通过查表得r的临界值r0.05=0.632,从而有______的把握认为x与Y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y═34.92+0.78x,因此,当母亲的身高为161cm时,可以估计女儿的身高大致为______.答案:查对临界值表,由临界值r0.05=0.632,可得有95%的把握认为x与Y之间具有线性相关关系,回归直线方程为y=34.92+0.78x,因此,当x=161cm时,y=34.92+0.78x=34.92+0.78×161=161cm故为:95%,161cm.4.已知A(0,1),B(3,7),C(x,15)三点共线,则x的值是()
A.5
B.6
C.7
D.8答案:C5.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量
(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量
(单位:千瓦时)低谷电价(单位:
元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为______元(用数字作答)答案:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1(元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3(元),本月的总电费为118.1+30.3=148.4(元),故为:148.4.6.复数z=(2+i)(1+i)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:因为z=(2+i)(1+i)=2+3i+i2=1+3i,所以复数对应点的坐标为(1,3),所以位于第一象限.故选A.7.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()
A.简单随机抽样
B.系统抽样
C.分层抽样
D.其它抽样方法答案:B8.三段论:“①船准时启航就能准时到达目的港,②这艘船准时到达了目的港,③这艘船是准时启航的”中,“小前提”是______.(填序号)答案:三段论:“①船准时启航就能准时到达目的港;②这艘船准时到达了目的港,③这艘船是准时启航的,我们易得大前提是①,小前提是②,结论是③,故为:②.9.已知平面直角坐标系内三点O(0,0),A(1,1),B(4,2)
(Ⅰ)求过O,A,B三点的圆的方程,并指出圆心坐标与圆的半径.
(Ⅱ)求过点C(-1,0)与条件(Ⅰ)的圆相切的直线方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴线段OA中点坐标为(12,12),线段OB的中点坐标为(2,1),kOA=1,kOB=12,∴线段OA垂直平分线的方程为y-12=-(x-12),线段OB垂直平分线的方程为y-1=12(x-2),联立两方程解得:x=4y=-3,即圆心(4,-3),半径r=42+(-3)2=5,则所求圆的方程为x2+y2-8x+6y=0,圆心是(4,-3)、半径r=5;(Ⅱ)分两种情况考虑:当切线方程斜率不存在时,直线x=-1满足题意;当斜率存在时,设为k,切线方程为y=k(x+1),即kx-y+k=0,∴圆心到切线的距离d=r,即|5k+3|k2+1=5,解得:k=815,此时切线方程为y=815(x+1),综上,所求切线方程为x=-1或y=815(x+1).10.两不重合直线l1和l2的方向向量分别为答案:∵直线l1和l2的方向向量分别为11.一个箱中原来装有大小相同的
5
个球,其中
3
个红球,2
个白球.规定:进行一次操
作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白
球,则该球不放回,并另补一个红球放到箱中.”
(1)求进行第二次操作后,箱中红球个数为
4
的概率;
(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为
4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.12.已知某一随机变量ξ的分布列如下,且Eξ=6.3,则a的值为()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C13.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π14.设四边形ABCD中,有且,则这个四边形是()
A.平行四边形
B.矩形
C.等腰梯形
D.菱形答案:C15.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,中间的数字表示得分的十位数,下列对乙运动员的判断错误的是()A.乙运动员得分的中位数是28B.乙运动员得分的众数为31C.乙运动员的场均得分高于甲运动员D.乙运动员的最低得分为0分答案:根据题意,可得甲的得分数据:8,14,16,13,23,26,28,30,30,39可得甲得分的平均数是22.7乙的得分数据:12,15,25,24,21,31,36,31,37,44可得乙得分的平均数是27.6,31出现了两次,可得乙得分的众数是1将乙得分数据按从小到大的顺序排列,位于中间的两个数是25和31,故中位数是12(25+31)=28由以上的数据,可得:乙运动员得分的中位数是28,A项是正确的;乙运动员得分的众数为31,B项是正确的;乙运动员的场均得分高于甲运动员,C各项是正确的.而D项因为乙运动员的得分没有0分,故D项错误故选:D16.已知点A(-3,0),B(3,0),动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线
y=x-2交于D、E两点,求线段DE的中点坐标及其弦长DE.答案:∵|CB|-|CA|=2<23=|AB|,∴点C的轨迹是以A、B为焦点的双曲线,2a=2,2c=23,∴a=1,c=3,∴b=2,∴点C的轨迹方程为x2-y22=1.把直线
y=x-2代入x2-y22=1化简可得x2+4x-6=0,△=16-4(-6)=40>0,设D、E两点的坐标分别为(x1,y1
)、(x2,y2),∴x1+x2=-4,x1•x2=-6.∴线段DE的中点坐标为M(-2,4),DE=1+1•|x1-x2|=2•(x1
+x2)2-4x1
•x2
=216-4(-6)=45.17.如图,AD是圆内接三角形ABC的高,AE是圆的直径,AB=6,AC=3,则AE×AD等于
______.答案:∵AE是直径∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故为32.18.已知直线l:(t为参数)的倾斜角是()
A.
B.
C.
D.答案:D19.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:2220.设ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则a1x1,a2x2,…,anxn的值中,现给出以下结论,其中你认为正确的是______.
①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.答案:由题意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,对于a1x1,a2x2,…,anxn的值中,若①成立,则分母都小于分子,由于分母的平方和为1,故可得a12+a22+…an2大于1,这与已知矛盾,故①不对;若②成立,则分母都大于分子,由于分母的平方和为1,故可得a12+a22+…an2小于1,这与已知矛盾,故②不对;由于③与①两结论互否,故③对④不可能成立,a1x1,a2x2,…,anxn的值中有多于一个的比值大于1是可以的,故不对⑤与②两结论互否,故正确综上③⑤两结论正确故为③⑤21.已知x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,则a+b=______.答案:∵x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,∴(-3-2i)2+a(-3-2i)+b=0,化为5-3a+b+(12-2a)i=0.根据复数相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故为19.22.某制药厂为了缩短培养时间,决定优选培养温度,试验范围定为29℃至50℃,现用分数法确定最佳温度,设第1,2,3次试验的温度分别为x1,x2,x3,若第2个试点比第1个试点好,则x3的值为(
)。答案:34℃或45℃23.过点(-1,3)且平行于直线x-2y+3=0的直线方程为()
A.x-2y+7=0
B.2x+y-1=0
C.x-2y-5=0
D.2x+y-5=0答案:A24.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B25.正方体的表面积与其外接球表面积的比为()A.3:πB.2:πC.1:2πD.1:3π答案:设正方体的棱长为a,不妨设a=1,正方体外接球的半径为R,则由正方体的体对角线的长就是外接球的直径的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面积为:S球=4πR2=3π.则正方体的表面积与其外接球表面积的比为:6:3π=2:π.故选B.26.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()
A.
B.
C.
D.答案:D27.将5位志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方案有______种(用数字作答).答案:由题意,先分组,再到4个路口协助交警执勤,则不同的分配方案有C25A44=240种故为:240.28.已知动点P(x,y)满足(x+2)2+y2-(x-2)2+y2=2,则动点P的轨迹是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即动点P(x,y)到两定点(-2,0),(2,0)的距离之差等于2,由双曲线定义知动点P的轨迹是双曲线的一支(右支).:双曲线的一支(右支).29.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N等于()A.150B.200C.120D.100答案:∵每个零件被抽取的概率都相等,∴30N=0.25,∴N=120.故选C.30.已知两点分别为A(4,3)和B(7,-1),则这两点之间的距离为()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故选D.31.把函数y=sin(x-)-2的图象经过按平移得到y=sinx的图象,则=(
)
A.
B.
C.
D.答案:A32.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.33.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.34.甲、乙两人对一批圆形零件毛坯进行成品加工.根据需求,成品的直径标准为100mm.现从他们两人的产品中各随机抽取5件,测得直径(单位:mm)如下:
甲:105
102
97
96
100
乙:100
101
102
97
100
(I)分别求甲、乙的样本平均数与方差,并由此估计谁加工的零件较好?
(Ⅱ)若从乙样本的5件产品中再次随机抽取2件,试求这2件产品中至少有一件产品直径为100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,据此估计乙加工的零件好;(Ⅱ)从乙样本的5件产品中再次随机抽取2件的全部结果有如下10种:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).设事件A为“其中至少有一件产品直径为100”,则时间A有7种.故P(A)=710.35.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()
A.
B.
C.
D.答案:B36.将函数="2x"+1的图像按向量平移得函数=的图像则
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故=(-1,-1).解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x-h+1+k∴∴∴=(-1,-1)故答案为:C.37.设点P(t2+2t,1)(t>0),则|OP|(O为坐标原点)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,当t=2时取得等号.故选D.38.已知正三角形的外接圆半径为63cm,求它的边长.答案:设正三角形的边长为a,则12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的边长为18cm.39.已知向量,满足:||=3,||=5,且=λ,则实数λ=()
A.
B.
C.±
D.±答案:C40.将4封不同的信随机地投入到3个信箱里,记有信的信箱个数为ξ,试求ξ的分布列.答案:由题意知变量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是41.方程cos2x=x的实根的个数为
______个.答案:cos2x=x的实根即函数y=cos2x与y=x的图象交点的横坐标,故可以将求根个数的问题转化为求两个函数图象的交点个数.如图在同一坐标系中作出y=cos2x与y=x的图象,由图象可以看出两图象只有一个交点,故方程的实根只有一个.故应该填
1.42.已知三点A(1,2),B(2,-1),C(2,2),E,F为线段BC的三等分点,则AE•AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE•AF=1×1+(-2)×(-1)=3.故为:343.试指出函数y=3x的图象经过怎样的变换,可以得到函数y=(13)x+1+2的图象.答案:把函数y=3x的图象经过3次变换,可得函数y=(13)x+1+2的图象,步骤如下:y=3x沿y轴对称y=(13)x左移一个单位y=(13)x+1上移2个单位y=(13)x+1+2.44.在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=______.答案:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AB+AD=AC,又O为AC的中点,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故为:2.45.如图是将二进制数11111(2)化为十进制数的一个程序框图,判断框内应填入的条件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先将二进制数11111(2)化为十进制数,11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框图对累加变量S和循环变量i的赋值S=1,i=1,i不满足判断框中的条件,执行S=1+2×S=1+2×1=3,i=1+1=2,i不满足条件,执行S=1+2×3=7,i=2+1=3,i不满足条件,执行S=1+2×7=15,i=3+1=4,i仍不满足条件,执行S=1+2×15=31,此时31是要输出的S值,说明i不满足判断框中的条件,由此可知,判断框中的条件应为i>4.故选D.46.若向量两两所成的角相等,且,则等于()
A.2
B.5
C.2或5
D.或答案:C47.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买(
)块肥皂。
A.5
B.2
C.3
D.4答案:D48.平行投影与中心投影之间的区别是
______.答案:平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点,故为:平行投影的投影线互相平行,而中心投影的投影线交于一点49.椭圆上有一点P,F1,F2是椭圆的左、右焦点,△F1PF2为直角三角形,则这样的点P有()
A.3个
B.4个
C.6个
D.8个答案:C50.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C第3卷一.综合题(共50题)1.下列说法正确的是()
A.向量
与向量是共线向量,则A、B、C、D必在同一直线上
B.向量与平行,则与的方向相同或相反
C.向量的长度与向量的长度相等
D.单位向量都相等答案:C2.如图,在正方体ABCD-A1B1C1D1中,E为AB的中点.
(1)求异面直线BD1与CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D为原点,DC为y轴,DA为x轴,DD1为Z轴建立空间直角坐标系,…(1分)则A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值为1515…(1分)(2)D1D⊥平面AEC,所以D1D为平面AEC的法向量,D1D=(0,0,1)…(1分)设平面A1EC法向量为n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n•A1E=0n•A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)3.已知|OA|=1,|OB|=3,OA•OB=0,点C在∠AOB内,且∠AOC=30°,设OC=mOA+nOB(m、n∈R),则mn等于______.答案:∵|OA|=1,|OB|=3,OA•OB=0,OA⊥OBOC•OB=OC×3cos60°=32OC=3×12
|OC
|OC•OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x轴方向上的分量为12|OC|OC在y轴方向上的分量为32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m两式相比可得:mn=3.故为:34.如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l相交于A、B两点,过A、B分别作l的垂线与圆C过F的切线相交于点P和点Q,则必在以F为焦点,l为准线的同一条抛物线上.
(Ⅰ)建立适当的坐标系,求出该抛物线的方程;
(Ⅱ)对以上结论的反向思考可以得到另一个命题:“若过抛物线焦点F的直线与抛物线相交于P、Q两点,则以PQ为直径的圆一定与抛物线的准线l相切”请问:此命题是正确?试证明你的判断;
(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为平分依据)答案:(Ⅰ)过F作l的垂线交l于K,以KF的中点为原点,KF所在直线为x轴建立平面直角坐标系如图1,并设|KF|=p,则可得该抛物线的方程为
y2=2px(p>0);(Ⅱ)该命题为真命题,证明如下:如图2,设PQ中点为M,P、Q、M在抛物线准线l上的射影分别为A、B、D,∵PQ是抛物线过焦点F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位线,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ为直径的圆的圆心,∴圆M与l相切.(Ⅲ)选择椭圆类比(Ⅱ)所写出的命题为:“过椭圆一焦点F的直线与椭圆交于P、Q两点,则以PQ为直径的圆与椭圆相应的准线l相离”.此命题为真命题,证明如下:证明:设PQ中点为M,椭圆的离心率为e,则0<e<1,P、Q、M在相应准线l上的射影分别为A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位线,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圆M与准线l相离.选择双曲线类比(Ⅱ)所写出的命题为:“过双曲线一焦点F的直线与双曲线交于P、Q两点,则以PQ为直径的圆与双曲线相应的准线l相交”.此命题为真命题,证明如下:证明:设PQ中点为M,椭圆的离心率为e,则e>1,P、Q、M在相应准线l上的射影分别为A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位线,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圆M与准线l相交.5.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:
分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)
(Ⅰ)完成频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?答案:解(Ⅰ)分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以产品直径落在[10.95,11.35)范围内的可能性为69%.6.设a、b∈R+且a+b=3,求证1+a+1+b≤10.答案:证明:证法一:(综合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10证法二:(分析法)∵a、b∈R+且a+b=3,∴欲证1+a+1+b≤10只需证(1+a+1+b)2≤10即证2+a+b+2(1+a)?(1+b)≤10即证2(1+a)?(1+b)≤5只需证4(1+a)?(1+b)≤25只需证4(1+a)?(1+b)≤25即证4(1+a+b+ab)≤25只需证4ab≤9即证ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立7.在线性回归模型y=bx+a+e中,下列说法正确的是()A.y=bx+a+e是一次函数B.因变量y是由自变量x唯一确定的C.随机误差e是由于计算不准确造成的,可以通过精确计算避免随机误差e的产生D.因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生答案:线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.A不正确,根据线性回归方程做出的y的值是一个预报值,不是由x唯一确定,故B不正确,随机误差不是由于计算不准造成的,故C不正确,y除了受自变量x的影响之外还受其他因素的影响,故D正确,故选D.8.若向量e1,e2不共线,且ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为______.答案:∵当(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为k≠±1.故为:k≠±1.9.如图,正方体ABCD-A1B1C1D1的棱长为3,点M在AB上,且AM=13AB,点P在平面ABCD上,且动点P到直线A1D1的距离与P到点M的距离相等,在平面直角坐标系xAy中,动点P的轨迹方程是______.答案:作PN⊥AD,则PN⊥面A1D1DA,作NH⊥A1D1,N,H为垂足,由三垂线定理可得PH⊥A1D1.以AD,AB,AA1为x轴,y轴,z轴,建立空间坐标系,设P(x,y,0),由题意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故为:x2=2y+8.10.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()
A.5-
B.5+
C
D.10答案:B11.已知:空间四边形ABCD,AB=AC,DB=DC,求证:BC⊥AD.答案:取BC的中点为E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.这样,BC就和平面ADE内的两条相交直线AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.12.已知双曲线x2-y23=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为______.答案:设A(x1,y1)、B(x2,y2),代入双曲线方程x2-y23=1相减得直线AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故为:613.一个算法的流程图如图所示,则输出S的值为
.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.14.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.
(Ⅰ)求∠ADF的度数;
(Ⅱ)若AB=AC,求ACBC的值.答案:解
(1)∵AC为圆O的切线,∴∠B=∠EAC,又CD是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE为圆O的直径,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形内角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3315.若向量a,b的夹角为120°,且|a|=1,|b|=2,c=a+b,则有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由题意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故选A.16.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是()
A.内切
B.相交
C.外切
D.外离答案:B17.如图,从圆O外一点P引两条直线分别交圆O于点A,B,C,D,且PA=AB,PC=5,CD=9,则AB的长等于______.答案:∵PAB和PBC是圆O的两条割线∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故为:3518.曲线xy=1的参数方程不可能是()
A.
B.
C.
D.答案:B19.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.20.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.21.参数方程x=cosαy=1+sinα(α为参数)化成普通方程为
______.答案:∵x=cosαy=1+sinα(α为参数)∴x2+(y-1)2=cos2α+sin2α=1.即:参数方程x=cosαy=1+sinα(α为参数)化成普通方程为:x2+(y-1)2=1.故为:x2+(y-1)2=1.22.如图,在正方体ABCD-A1B1C1D1中,M、N分别为AB、B1C的中点.用AB、AD、AA1表示向量MN,则MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故为12AB+12AD+12AA1.23.圆的极坐标方程是ρ=2cosθ+2sinθ,则其圆心的极坐标是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A24.若x、y∈R+且x+2y≤ax+y恒成立,则a的最小值是()A.1B.2C.3D.1+22答案:由题意,根据柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故选C.25.参数方程(θ为参数)化为普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D26.已知:关于x的方程2x2+kx-1=0
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是-1,求另一个根及k值.答案:(1)证明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有两个不相等的实数根.(2)设2x2+kx-1=0的另一个根为x,则x-1=-k2,(-1)•x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一个根为12,k的值为1.27.命题“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0答案:D28.已知抛物线的顶点在坐标原点,焦点在x轴正半轴,抛物线上一点M(3,m)到焦点的距离为5,求m的值及抛物线方程.答案:∵抛物线顶点在原点,焦点在x轴上,其上一点M(3,m)∴设抛物线方程为y2=2px∵其上一点M(3,m)到焦点的距离为5,∴3+p2=5,可得p=4∴抛物线方程为y2=8x.29.设0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,则a2+1、a+1、2a的大小分别为:1.25,1.5,1,又因为0<a<1时,y=logax为减函数,所以p>m>n故选D30.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型为O型,则其父母血型的所有可能情况有()
A.12种
B.6种
C.10种
D.9种答案:D31.△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=______.答案:∵△ABC内接于以O为圆心的圆,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故为30°.32.已知椭圆(a>b>0)的焦点分别为F1,F2,b=4,离心率e=过F1的直线交椭圆于A,B两点,则△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同协议书范本的实践经验总结
- 个人提供保险代理劳务合同
- 积极向上完成军训
- 迟到保证书写什么内容
- 货物采购合同权益
- 质量保证书范例设计指南汇编
- 学生过失承诺
- 二手房屋买卖合同按揭贷款问题
- 技术开发协议书格式模板
- 消防设施安装劳务合作
- 2023年河南省高中学业水平考试政治试卷真题(含答案详解)
- SEER数据库的申请及数据提取方法与流程
- 湖北省新中考语文现代文阅读技巧讲解与备考
- 幼儿园故事课件:《胸有成竹》
- (完整版)康复科管理制度
- 深度千分尺校准记录表
- GB/T 10000-2023中国成年人人体尺寸
- 电工安全用具课件
- 北师大版四年级数学上册《不确定性》评课稿
- 模板销售合同模板
- 对越自卫反击战专题培训课件
评论
0/150
提交评论