2023年成都农业科技职业学院高职单招(数学)试题库含答案解析_第1页
2023年成都农业科技职业学院高职单招(数学)试题库含答案解析_第2页
2023年成都农业科技职业学院高职单招(数学)试题库含答案解析_第3页
2023年成都农业科技职业学院高职单招(数学)试题库含答案解析_第4页
2023年成都农业科技职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年成都农业科技职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.在平面几何中,四边形的分类关系可用以下框图描述:

则在①中应填入______;在②中应填入______.答案:由题意知①对应的四边形是一个有一组邻边相等的平行四边形,∴这里是一个菱形,②处的图形是一个有一条腰和底边垂直的梯形,∴②处是一个直角梯形,故为:菱形;直角梯形.2.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ=______;.答案:∵由题意知该病的发病率为0.02,且每次实验结果都是相互独立的,∴ξ~B(10,0.02),∴由二项分布的方差公式得到Dξ=10×0.02×0.98=0.196.故为:0.1963.用反证法证明“a+b=1”时的反设为()

A.a+b>1且a+b<1

B.a+b>1

C.a+b>1或a+b<1

D.a+b<1答案:C4.设曲线C的方程是,将C沿x轴,y轴正向分别平移单位长度后,得到曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称.答案:(1)(2)证明略解析:(1)由已知得,,则平移公式是即代入方程得曲线C1的方程是(2)在曲线C上任取一点,设是关于点A的对称点,则有,,代入曲线C的方程,得关于的方程,即可知点在曲线C1上.反过来,同样可以证明,在曲线C1上的点关于点A的对称点在曲线C上,因此,曲线C与C1关于点A对称.5.已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立答案:对A,当k=1或2时,不一定有f(k)≥k2成立;对B,应有f(k)≥k2成立;对C,只能得出:对于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D6.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是(

)A.B.C.D.答案:B解析:解:因为在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,设变换为,将其代入方程中,得到x,y的关系式,对应相等可知,选B7.将函数="2x"+1的图像按向量平移得函数=的图像则

A=(1)B=(1,1)C=()

D(1,1)答案:C解析:分析:本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故=(-1,-1).解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x-h+1+k∴∴∴=(-1,-1)故答案为:C.8.如图是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上.

①______.②______.答案:本程序的作用是求1~1000的所有偶数的和而设计的一个程序,由于第一次执行循环时的循环变量S初值为0,循环变量S=S+i,计数变量i为2,步长为2,故空白处:①S=S+i,②i=i+2.故为:①S=S+i,②i=i+2.9.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台,问此样本若采用简单的随机抽样方法将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号001,002,112…用抽签法做112个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取10次,就得到一个容量为10的样本.10.若关于x的方程x2+ax+a2-1=0有一正根和一负根,则a的取值范围为______.答案:令f(x)=x2+ax+a2-1,∴二次函数开口向上,若方程有一正一负根,则只需f(0)<0,即a2-1<0,∴-1<a<1.故为:-1<a<1.11.已知点G是△ABC的重心,O是空间任一点,若OA+OB+OC=λOG,则实数λ=______.答案:由于G是三角形ABC的重心,则有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故为:312.设向量不共面,则下列集合可作为空间的一个基底的是(

A.{}

B.{}

C.{}

D.{}

答案:C13.若向量a=(-1,2),b=(-4,3),则a在b方向上的投影为()A.2B.22C.23D.10答案:设a与

b的夹角为θ,则cosθ=a•b|a|•|b|=4+65×5=25,∴则a在b方向上的投影为|a|•cosθ=5×25=2,故选A.14.直线3x+4y-12=0和3x+4y+3=0间的距离是

______.答案:由两平行线间的距离公式得直线3x+4y-12=0和3x+4y+3=0间的距离是|-12-3|5=3,故为3.15.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段答案:对于在平面内,若动点M到F1、F2两点的距离之和等于6,而6正好等于两定点F1、F2的距离,则动点M的轨迹是以F1,F2为端点的线段.故选D.16.一圆形纸片的圆心为O点,Q是圆内异于O点的一定点,点A是圆周上一点,把纸片折叠使点A与点Q重合,然后抹平纸片,折痕CD与OA交于P点,当点A运动时点P的轨迹是______.

①圆

②双曲线

③抛物线

④椭圆

⑤线段

⑥射线.答案:由题意可得,CD是线段AQ的中垂线,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半径R,即点P到两个定点O、Q的距离之和等于定长R(R>|OQ|),由椭圆的定义可得,点P的轨迹为椭圆,故为④.17.等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为

______.答案:等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,所以梯形的高为:1,按平行于上、下底边取x轴,则直观图A′B′C′D′的高为:12sin45°=24所以直观图的面积为:12×(1+3)×24=22故为:2218.设椭圆=1(a>b>0)的离心率为,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()

A.必在圆x2+y2=2内

B.必在圆x2+y2=2上

C.必在圆x2+y2=2外

D.以上三种情形都有可能答案:A19.b1是[0,1]上的均匀随机数,b=3(b1-2),则b是区间______上的均匀随机数.答案:∵b1是[0,1]上的均匀随机数,b=3(b1-2)∵b1-2是[-2,-1]上的均匀随机数,∴b=3(b1-2)是[-6,-3]上的均匀随机数,故为:[-6,-3]20.复数3+4i的模等于______.答案:|3+4i|=32+42=5,故为5.21.一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=______.(填算式)答案:若ξ=12,则取12次停止,第12次取出的是红球,前11次中有9次是红球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故为C911(38)10(58)222.下列赋值语句中正确的是()

A.m+n=3

B.3=i

C.i=i2+1

D.i=j=3答案:C23.已知向量,,若与共线,则的值为

A

B

C

D

答案:D解析:,,由,得24.复数z=(2+i)(1+i)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:因为z=(2+i)(1+i)=2+3i+i2=1+3i,所以复数对应点的坐标为(1,3),所以位于第一象限.故选A.25.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:1626.用反证法证明命题“三角形的内角中至多有一个是钝角”时,第一步是:“假设______.答案:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题“三角形的内角中至多有一个是钝角”的否定为:“三角形的内角中至少有两个钝角”,故为“三角形的内角中至少有两个钝角”.27.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为______.答案:设直线l的方程为y=k(x-4),即kx-y-4k=0∵直线l与曲线(x-2)2+y2=1有公共点,∴圆心到直线l的距离小于等于半径即|2k-4k|k2+1≤1,解得-33≤

k≤33∴直线l的斜率的取值范围为[-33,33]故为[-33,33]28.为求方程x5-1=0的虚根,可以把原方程变形为(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为______.答案:由题可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比较系数可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一个虚根为-1-5±10-25i4,-1+5±10+25i4中的一个故为:-1-5+10-25i4.29.用0,1,2,3组成没有重复数字的四位数,其中奇数有()

A.8个

B.10个

C.18个

D.24个答案:A30.将一枚均匀硬币

随机掷20次,则恰好出现10次正面向上的概率为()

A.

B.

C.

D.答案:D31.如图所示,设k1,k2,k3分别是直线l1,l2,l3的斜率,则()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C32.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)33.“a>1”是“1a<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由1a<1得:当a>0时,有1<a,即a>1;当a<0时,不等式恒成立.所以1a<1?a>1或a<0从而a>1是1a<1的充分不必要条件.故应选:A34.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)

(1)AB+BC+AC

(2)AM+MB+BC

(3)AM+BM+CM

(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)35.(本小题满分10分)选修4-1:几何证明选讲

如图,的角平分线的延长线交它的外接圆于点.

(Ⅰ)证明:;

(Ⅱ)若的面积,求的大小.答案:(Ⅰ)证明见解析(Ⅱ)90°解析:本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.36.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三个向量共面,则实数λ等于

A.

B.

C.

D.答案:D37.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是()

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D38.我市某机构为调查2009年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,右图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.0.62B.0.38C.6200D.3800答案:由图知输出的S的值是运动时间超过20分钟的学生人数,由于统计总人数是10000,又输出的S=6200,故运动时间不超过20分钟的学生人数是3800事件“平均每天参加体育锻炼时间在0~20分钟内的学生的”频率是380010000=0.38故选B39.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C40.在△ABC中,已知A(2,3),B(8,-4),点G(2,-1)在中线AD上,且|AG|=2|GD|,则C的坐标为______.答案:设C(x,y),则D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故为:(-4,-2).41.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()

A.40

B.30

C.20

D.12答案:A42.已知等差数列{an}的前n项和为Sn,若向量OB=a100OA+a101OC,且A、B、C三点共线(该直线不过点O),则S200等于______.答案:由题意可知:向量OB=a100OA+a101OC,又∵A、B、C三点共线,则a100+a101=1,等差数列前n项的和为Sn=(a1+an)?n

2,∴S200=(a1+a200)×200

2=(a100+

a101)×2002=100,故为100.43.已知向量i=(1,0),j=(0,1).若向量i+λj与λi+j垂直,则实数λ=______.答案:由题意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj与λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故为:044.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()

A.5-

B.5+

C

D.10答案:B45.随机变量ξ的分布列为

ξ01xP15p310且Eξ=1.1,则p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故为12;2.46.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.47.△ABC中,,若,则m+n=()

A.

B.

C.

D.1答案:B48.已知a=(5,4),b=(3,2),则与2a-3b同向的单位向量为

______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)设与2a-3b平行的单位向量为e=(x,y),则2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故为e=±(55,255)49.圆x2+y2=1上的点到直线x=2的距离的最大值是

______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:350.半径为5,圆心在y轴上,且与直线y=6相切的圆的方程为______.答案:如图所示,因为半径为5,圆心在y轴上,且与直线y=6相切,所以可知有两个圆,上圆圆心为(0,11),下圆圆心为(0,1),所以圆的方程为x2+(y-1)2=25或x2+(y-11)2=25.第2卷一.综合题(共50题)1.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.

求:

(1)d的变化范围;

(2)当d取最大值时两条直线的方程.答案:(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9.…(2分)②当两条直线的斜率存在时,设这两条直线方程为l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)综合①②可知,所求d的变化范围为(0,310].方法二:如图所示,显然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的变化范围为(0,310].(2)由图可知,当d取最大值时,两直线垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)2.用数学归纳法证明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,当n=1时,左端为______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,当n=1时,3n+1=4,而等式左边起始为1×4的连续的正整数积的和,故n=1时,等式左端=1×4=4故为:4.3.函数y=a|x|(a>1)的图象是()

A.

B.

C.

D.

答案:B4.用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1,当x=2时的值.答案:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.5.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)

(1)AB+BC+AC

(2)AM+MB+BC

(3)AM+BM+CM

(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)6.已知=(1,2),=(x,1),当(+2)⊥(2-)时,实数x的值为(

A.6

B.2

C.-2

D.或-2答案:D7.数据:1,1,3,3的众数和中位数分别是()

A.1或3,2

B.3,2

C.1或3,1或3

D.3,3答案:A8.某射手射击所得环数X的分布列为:

ξ

4

5

6

7

8

9

10

P

0.02

0.04

0.06

0.09

0.28

0.29

0.22

则此射手“射击一次命中环数大于7”的概率为()

A.0.28

B.0.88

C.0.79

D.0.51答案:C9.已知集合M={0,1},N={2x+1|x∈M},则M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},当x=0时,2x+1=1;当x=1时,2x+1=3,∴N={1,3}则M∩N={1}.故选A.10.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负数根的绝对值比正数根大,那么实数m的取值范围是()

A.-3<m<0

B.0<m<3

C.m<-3或m>0

D.m<0或m>3答案:A11.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.

(Ⅰ)求证:AC是△BDE的外接圆的切线;

(Ⅱ)若AD=23,AE=6,求EC的长.答案:证明:(Ⅰ)取BD的中点O,连接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圆的切线.

…(5分)(Ⅱ)设⊙O的半径为r,则在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.

…(10分)12.若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于

A.2

B.

C.4

D.答案:A13.用演绎法证明y=x2是增函数时的大前提是______.答案:∵证明y=x2是增函数时,依据的原理就是增函数的定义,∴用演绎法证明y=x2是增函数时的大前提是:增函数的定义故填增函数的定义14.已知直线经过点,倾斜角,设与圆相交与两点,求点到两点的距离之积。答案:2解析:把直线代入得,则点到两点的距离之积为15.已知三个向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:实数λ,μ,使p=λq+μr,则a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在实数,,使p=λq+μr,故向量p、q、r共面.16.在极坐标系中,点A(2,π2)关于直线l:ρcosθ=1的对称点的一个极坐标为______.答案:在直角坐标系中,A(0,2),直线l:x=1,A关于直线l的对称点B(2,2).由于|OB|=22,OB直线的倾斜角等于π4,且点B在第一象限,故B的极坐标为(22,π4),故为

(22,π4).17.(几何证明选讲选做题)如图4,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=______.答案:如图所示:作出直径AE,∵OA=2,C为OA的中点,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故为355.18.若函数,则下列结论正确的是(

)A.,在上是增函数B.,在上是减函数C.,是偶函数D.,是奇函数答案:C解析:对于时有是一个偶函数19.在空间直角坐标系中,O为坐标原点,设A(,,),B(,,0),C(

,,),则(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C20.(不等式选讲)

已知a>0,b>0,c>0,abc=1,试证明:.答案:略解析::证明:由,所以同理:

相加得:左³……………(10分)21.下列集合中,不同于另外三个集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列举法,C是描述法,对于B要注意集合的代表元素是y,故与A,C相同,而D表示该集合含有一个元素,即方程“x=0”.故选D.22.已知函数f(x)=ax2+(a+3)x+2在区间[1,+∞)上为增函数,则实数a的取值范围是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函数f(x)=ax2+x+1在区间[1,+∞)上为增函数,∴f′(x)=2ax+a+3≥0在区间[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故为:a≥0.23.若向量a,b的夹角为120°,且|a|=1,|b|=2,c=a+b,则有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由题意知ac=a

(a+b)=a2+

a

b=1+1×2cos120°=0,所以a⊥c.故选A.24.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.25.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.26.点P(1,3,5)关于平面xoz对称的点是Q,则向量=()

A.(2,0,10)

B.(0,-6,0)

C.(0,6,0)

D.(-2,0,-10)答案:B27.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是()A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词答案:“x=±1”可以写成“x=1或x=-1”,故选B.28.已知方程(1+k)x2-(1-k)y2=1表示焦点在x轴上的双曲线,则k的取值范围为(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A29.如图示程序运行后的输出结果为______.答案:该程序的作用是求数列ai=2i+3中满足条件的ai的值∵最终满足循环条件时i=9∴ai的值为21故为:2130.已知椭圆C1:x2a2+y2b2=1(a>b>0)的离心率为33,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.

(1)求椭圆C1的方程;

(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;

(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足QR•RS=0,求|QS|的取值范围.答案:(1)由e=33得2a2=3b2,又由直线l:y=x+2与圆x2+y2=b2相切,得b=2,a=3,∴椭圆C1的方程为:x23+y22=1.(4分)(2)由MP=MF2得动点M的轨迹是以l1:x=-1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为y2=4x.(8分)(3)Q(0,0),设R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR•RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化简得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(当且仅当y1=±4时等号成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴当y22=64,即y2=±8时|QS|min=85,∴|QS|的取值范围是[85,+∞).(13分)31.BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,连接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜边,∴∠BAC为直角,∴图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故为:8.32.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,设(α,β∈R),则α+β的最大值等于

()

A.

B.

C.

D.1

答案:B33.若点(a,9)在函数y=3x的图象上,则tanaπ6=______.答案:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故为:334.已知A(0,1),B(3,7),C(x,15)三点共线,则x的值是()

A.5

B.6

C.7

D.8答案:C35.如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=______.答案:由割线长定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD为正三角形,∠CBD=12∠COD=30°.36.直线2x-3y+10=0的法向量的坐标可以是答案:C37.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与直线l:x=的位置关系是()

A.相交

B.相切

C.相离

D.不能确定答案:C38.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.答案:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.∴直线ax+by+c=0与圆x2+y2=1相切的概率是236=118(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5∴当a=1时,b=5,(1,5,5)1种当a=2时,b=5,(2,5,5)1种当a=3时,b=3,5,(3,3,5),(3,5,5)2种当a=4时,b=4,5,(4,4,5),(4,5,5)2种当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种当a=6时,b=5,6,(6,5,5),(6,6,5)2种故满足条件的不同情况共有14种故三条线段能围成不同的等腰三角形的概率为1436=718.39.如图,在四边形ABCD中,++=4,==0,+=4,则(+)的值为()

A.2

B.

C.4

D.

答案:C40.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故为:(17,18].41.函数y=ax的反函数的图象过点(9,2),则a的值为______.答案:依题意,点(9,2)在函数y=ax的反函数的图象上,则点(2,9)在函数y=ax的图象上将x=2,y=9,代入y=ax中,得9=a2解得a=3故为:3.42.设双曲线(a>0,b>0)的右顶点为A,P为双曲线上的一个动点(不是顶点),从点A引双曲线的两条渐近线的平行线,与直线OP分别交于Q,R两点,其中O为坐标原点,则|OP|2与|OQ|•|OR|的大小关系为()

A.|OP|2<|OQ|•|OR|

B.|OP|2>|OQ|•|OR|

C.|OP|2=|OQ|•|OR|

D.不确定答案:C43.椭圆x225+y29=1的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为______.答案:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故为20.44.由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的自然数有______.答案:由题意,一位数有:1,2,3;两位数有:12,21,23,32,13,31;三位数有:123,132,213,231,321,312故为:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.45.两名女生,4名男生排成一排,则两名女生不相邻的排法共有______

种(以数字作答)答案:由题意,先排男生,再插入女生,可得两名女生不相邻的排法共有A44?A25=480种故为:48046.若a2+b2=4,则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是______.答案:若a2+b2=4,由于两圆(x-a)2+y2=1和x2+(y-b)2=1的圆心距为(a-0)2+(0-b)2=a2+b2=2,正好等于两圆的半径之和,故两圆相外切,故为相外切.47.若a为实数,,则a等于()

A.

B.-

C.2

D.-2答案:B48.从装有2个红球和2个白球的口袋内,任取2个球,那么下面互斥而不对立的两个事件是()

A.恰有1个白球;恰有2个白球

B.至少有1个白球;都是白球

C.至少有1个白球;

至少有1个红球

D.至少有1个白球;

都是红球答案:A49.(文)椭圆的一个焦点与短轴的两端点构成一个正三角形,则该椭圆的离心率为()

A.

B.

C.

D.不确定答案:C50.已知一种材料的最佳加入量在l000g到2000g之间,若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:1618或1382第3卷一.综合题(共50题)1.已知α1,α2,…αn∈(0,π),n是大于1的正整数,求证:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:证明:下面用数学归纳法证明(1)n=2时,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|•|sinα2|<sinα1+sinα2,所以n=2时成立.(2)假设n=k(k≥2)时成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk当n=k+1时,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|•|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1时也成立.由(1)(2)得,原式成立.2.设,求证:。答案:证明略解析:证明:因为,所以有。又,故有。…………10分于是有得证。

…………20分3.(几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切

⊙O于D,∠MDA=45°,则∠DCB=______.答案:连接BD,∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故为:135°.4.已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则

∠DBE=______.答案:连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故为:∠DBE=55°.5.某小组有3名女生、4名男生,从中选出3名代表,要求至少女生与男生各有一名,共有______种不同的选法.(要求用数字作答)答案:由题意知本题是一个分类计数问题,要求至少女生与男生各有一名有两个种不同的结果,即一个女生两个男生和一个男生两个女生,∴共有C31C42+C32C41=30种结果,故为:306.如图是容量为150的样本的频率分布直方图,则样本数据落在[6,10)内的频数为()A.12B.48C.60D.80答案:根据频率分布直方图,样本数据落在[6,10)内的频数为0.08×4×150=48故选B.7.某程序框图如图所示,该程序运行后输出的k的值是()A.4B.5C.6D.7答案:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环

S

K循环前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

20594第五圈

否∴最终输出结果k=4故为A8.下列赋值语句中正确的是()

A.m+n=3

B.3=i

C.i=i2+1

D.i=j=3答案:C9.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()

A.有且仅有一条

B.有且仅有两条

C.有无穷多条

D.不存在答案:B10.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1511.下列说法:

①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选择的模型比较合适;

②用相关指数可以刻画回归的效果,值越大说明模型的拟和效果越好;

③比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型拟和效果越好.

其中说法正确的个数为()

A.0个

B.1个

C.2个

D.3个答案:C12.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P()的值为()

A.

B.

C.

D.

答案:D13.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)14.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()

A.

B.

C.

D.

答案:C15.抛物线x2+y=0的焦点位于()

A.y轴的负半轴上

B.y轴的正半轴上

C.x轴的负半轴上

D.x轴的正半轴上答案:A16.已知(2x+1)3的展开式中,二项式系数和为a,各项系数和为b,则a+b=______.(用数字表示)答案:由题意可得(2x+1)3的展开式中,二项式系数和为a=23=8令x=1可得各项系数和为b=(2+1)3=27∴a+b=35故为:3517.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.18.l1,l2,l3是空间三条不同的直线,则下列命题正确的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共点l1,l2,l3共面答案:B19.将(x+y+z)5展开合并同类项后共有______项,其中x3yz项的系数是______.答案:将(x+y+z)5展开合并同类项后,每一项都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是实数,a、b、c∈N,构造8个完全一样的小球模型,分成3组,每组至少一个,共有分法C27种,每一组中都去掉一个小球的数目分别作为(x+y+z)5的展开式中每一项中x,y,z各字母的次数,小球分组模型与各项的次数是一一对应的.故将(x+y+z)5展开合并同类项后共有C27=21项.把(x+y+z)5的展开式看成5个因式(x+y+z)的乘积形式.从中任意选3个因式,这3个因式都取x,另外的2个因式分别取y、z,相乘即得含x3yz项,故含x3yz项的系数为C35=20,故为21;20.20.已知x、y的取值如下表:x0134y2.24.34.86.7从散点图分析,y与x线性相关,且回归方程为y=0.95x+a,则a=______.答案:点(.x,.y)在回归直线上,计算得.x=2,.y=4.5;代入得a=2.6;故为2.6.21.设a=log32,b=log23,c=,则()

A.c<b<a

B.a<c<b

C.c<a<b

D.b<c<a答案:C22.若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是()A.2B.2.5C.5D.10答案:设母线长为l,则S侧=π(1+3)l=4πl.S上底+S下底=π?12+π?32=10π.据题意4πl=20π即l=5,故选C.23.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.24.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:2325.双曲线x225-y29=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是()A.17B.7C.7或17D.2或22答案:由题意,a=5,则由双曲线的定义可知PF1-PF2=±10,∴PF2=2或22,故选D.26.阅读下面的程序框图,该程序运行后输出的结果为______.答案:循环前,S=0,A=1,第1次判断后循环,S=1,A=2,第2次判断并循环,S=3,A=3,第3次判断并循环,S=6,A=4,第4次判断并循环,S=10,A=5,第5次判断并循环,S=15,A=6,第6次判断并退出循环,输出S=15.故为:15.27.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5228.若函数f(x)对任意实数x都有f(x)<f(x+1),那么()A.f(x)是增函数B.f(x)没有单调递增区间C.f(x)没有单调递减区间D.f(x)可能存在单调递增区间,也可能存在单调递减区间答案:根据函数f(x)对任意实数x都有f(x)<f(x+1),画出一个满足条件的函数图象如右图所示;根据图象可知f(x)可能存在单调递增区间,也可能存在单调递减区间故选D.29.若一元二次方程ax2+2x+1=0有一个正根和一个负根,则有

A.a<0

B.a>0

C.a<-1

D.a>1答案:A30.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:171.8或148.231.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()

A.当n=6时,该命题不成立

B.当n=6时,该命题成立

C.当n=4时,该命题不成立

D.当n=4时,该命题成立答案:C32.△ABC中,A(1,2),B(3,1),重心G(3,2),则C点坐标为______.答案:设点C(x,y)由重心坐标公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故点C的坐标为(5,3)故为(5,3)33.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.34.如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.

(Ⅰ)证明A,P,O,M四点共圆;

(Ⅱ)求∠OAM+∠APM的大小.答案:证明:(Ⅰ)连接OP,OM.因为AP与⊙O相切于点P,所以OP⊥AP.因为M是⊙O的弦BC的中点,所以OM⊥BC.于是∠OPA+∠OMA=180°.由圆心O在∠PAC的内部,可知四边形M的对角互补,所以A,P,O,M四点共圆.(Ⅱ)由(Ⅰ)得A,P,O,M四点共圆,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°.又∵A,P,O,M四点共圆∴∠OPM=∠OAM所以∠OAM+∠APM=90°.35.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1036.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()

A.

B.

C.

D.4答案:A37.某校有初中学生1200人,高中学生900人,教师120人,现用分层抽样方法从所有师生中抽取一个容量为n的样本进行调查,如果从高中学生中抽取60人,那么n=______.答案:每个个体被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故为:148.38.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论