2023年广州松田职业学院高职单招(数学)试题库含答案解析_第1页
2023年广州松田职业学院高职单招(数学)试题库含答案解析_第2页
2023年广州松田职业学院高职单招(数学)试题库含答案解析_第3页
2023年广州松田职业学院高职单招(数学)试题库含答案解析_第4页
2023年广州松田职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年广州松田职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知向量,,,则(

)A.B.C.5D.25答案:C解析:将平方即可求得C.2.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()

A.

B.

C.

D.答案:C3.已知0<a<1,loga(1-x)<logax则()

A.0<x<1

B.x<

C.0<x<

D.<x<1答案:C4.在复数范围内解方程|z|2+(z+.z)i=3-i2+i(i为虚数单位).答案:原方程化简为|z|2+(z+.z)i=1-i,设z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.5.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.6.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C7.在画两个变量的散点图时,下面哪个叙述是正确的(

A.预报变量x轴上,解释变量y轴上

B.解释变量x轴上,预报变量y轴上

C.可以选择两个变量中任意一个变量x轴上

D.可以选择两个变量中任意一个变量y轴上答案:B8.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.9.下列命题:

①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;

②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;

③两个随机变量相关性越强,则相关系数的绝对值越接近1;

其中正确命题的序号是

______.(写出所有正确命题的序号)答案:①是由于r可能是负值,要改为|r|的值越大,说明模型拟合的效果越好,故①错误,②对分类变量X与Y的随机变量的K2观测值来说,K2越大,“X与Y有关系”可信程度越大;故②正确③两个随机变量相关性越强,则相关系数的绝对值越接近1;故③正确,故为:③10.在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若

=λ+μ,则λ+μ=()

A.1

B.

C.

D.答案:D11.已知F1,F2为椭圆x2a2+y2b2=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率为e=32,则椭圆的方程为______.答案:根据椭圆的定义,△AF1B的周长为16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴椭圆的方程为x216+y24=1,故为x216+y24=112.如图,在棱长为2的正方体ABCD-A1B1C1D1中,以底面正方形ABCD的中心为坐标原点O,分别以射线OB,OC,AA1的指向为x轴、y轴、z轴的正方向,建立空间直角坐标系.试写出正方体八个顶点的坐标.答案:解设i,j,k分别是与x轴、y轴、z轴的正方向方向相同的单位坐标向量.因为底面正方形的中心为O,边长为2,所以OB=2.由于点B在x轴的正半轴上,所以OB=2i,即点B的坐标为(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以OB1=(2,0,2).即点B1的坐标为(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).13.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是______.若用分层抽样方法,则40岁以下年龄段应抽取______人.答案:∵将全体职工随机按1~200编号,并按编号顺序平均分为40组,由分组可知,抽号的间隔为5,∵第5组抽出的号码为22,∴第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).故为:37;2014.整数630的正约数(包括1和630)共有______个.答案:首先将630分解质因数630=2×32×5×7;然后注意到每一因数可出现的次幂数,如2可有20,21两种情况,3有30,31,32三种情况,5有50,51两种情况,7有70,71两种情况,按分步计数原理,整数630的正约数(包括1和630)共有2×3×2×2=24个.故为:24.15.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且

DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.答案:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7216.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲线如图所示,则有()

A.μ1<μ2,σ1<σ2

B.μ1<μ2,σ1>σ2

C.μ1>μ2,σ1<σ2

D.μ1>μ2,σ1>σ2

答案:A17.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是

______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-318.过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是______.答案:根据题意画出相应的图形,如图所示:直线PA和PB为过点P的两条切线,且∠APB=60°,设P的坐标为(a,b),连接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直线x+y-22=0上,∴a+b-22=0,即a+b=22②,联立①②解得:a=b=2,则P的坐标为(2,2).故为:(2,2)19.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为()

A.10

B.9

C.8

D.7答案:A20.(文)将图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图形中的(

A.

B.

C.

D.

答案:B21.已知直线y=kx+1与椭圆x25+y2m=1恒有公共点,则实数m的取值范围为()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直线y=kx+1恒过点M(0,1)要使直线y=kx+1与椭圆x25+y2m=1恒有公共点,则只要M(0,1)在椭圆的内部或在椭圆上从而有m>0m≠505+1m≤1,解可得m≥1且m≠5故选D.22.过点(1,0)且与直线x-2y-2=0平行的直线方程是()

A.x-2y-1=0

B.x-2y+1=0

C.2x+y-2=0

D.x+2y-1=0答案:A23.下列各量:①密度

②浮力

③风速

④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.24.直线2x-3y+10=0的法向量的坐标可以是答案:C25.已知m2+n2=1,a2+b2=2,则am+bn的最大值是()

A.1

B.

C.

D.以上都不对答案:C26.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),则△ABC的面积等于()

A.

B.

C.

D.

答案:A27.某种灯泡的耐用时间超过1000小时的概率为0.2,有3个相互独立的灯泡在使用1000小时以后,最多只有1个损坏的概率是()

A.0.008

B.0.488

C.0.096

D.0.104答案:D28.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2012次操作后得到的数是

()A.25B.250C.55D.133答案:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133∴操作结果,以3为周期,循环出现∵2012=3×670+2∴第2012次操作后得到的数与第2次操作后得到的数相同∴第2012次操作后得到的数是55故选C.29.已知双曲线的两渐近线方程为y=±32x,一个焦点坐标为(0,-26),

(1)求此双曲线方程;

(2)写出双曲线的准线方程和准线间的距离.答案:(1)由题意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故该双曲线的标准方程为y218-x28=1.(2)由(1)得,双曲线的准线方程为y=±1826x;准线间的距离为2a2c=2×1826=182613.30.参数方程(0<θ<2π)表示()

A.双曲线的一支,这支过点(1,)

B.抛物线的一部分,这部分过(1,)

C.双曲线的一支,这支过点(-1,)

D.抛物线的一部分,这部分过(-1,)答案:B31.算法:第一步

x=a;第二步

若b>x则x=b;第三步

若c>x,则x=c;

第四步

若d>x,则x=d;

第五步

输出x.则输出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序答案:x=a,若b>x,则b>a,x=b,否则x=a,即x为a,b中较大的值;若c>x,则x=c,否则x仍为a,b中较大的值,即x为a,b,c中较大的值;若d>x,则x=d,否则x仍为a,b,c中较大的值,即x为a,b,c中较大的值.故x为a,b,c,d中最大的数,故选A.32.(本题满分12分)

已知:

求证:答案:.证明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案33.若复数(1+bi)•(2-i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-12C.12D.2答案:由(1+bi)•(2-i)=2+b+(2b-1)i是纯虚数,则2+b=02b-1≠0,解得b=-2.故选A.34.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(

A.17

B.18

C.19

D.20答案:C35.|a|=4,|b|=5,|a+b|=8,则a与b的夹角为______.答案:设a与b的夹角为θ因为|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故为arccos234036.在市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个甲厂生产的合格灯泡的概率是______.答案:由题意知本题是一个相互独立事件同时发生的概率,∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665故为:0.66537.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意的连续取出2件,写出其中次品数ξ的概率分布.答案:依题意,随机变量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品数ξ的概率分布是:38.在边长为1的正方形ABCD中,若AB=a,BC=b,AC=c.则|a+b+2c|的值是______.答案:由题意可得|a|=|b|=1,|c|=2,a+

b=c,∴|a+b+2c|=|3c|=32,故为32.39.下列各组向量中,可以作为基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2个向量的坐标对应成比例,0-2=01,所以,这2个向量是共线向量,故不能作为基底.B、中的2个向量的坐标对应成比例,46=69,所以,这2个向量是共线向量,故不能作为基底.C中的2个向量的坐标对应不成比例,2-6≠-54,所以,这2个向量不是共线向量,故可以作为基底.D、中的2个向量的坐标对应成比例,212=-3-34,这2个向量是共线向量,故不能作为基底.故选C.40.若函数f(x)=x+1的值域为(2,3],则函数f(x)的定义域为______.答案:∵f(x)=x+1的值域为(2,3],∴2<x+1≤3∴1<x≤2故为:(1,2]41.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为______米.答案:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面宽为26m.故为:26.42.把方程化为以参数的参数方程是(

)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制43.下列图形中不一定是平面图形的是(

A.三角形

B.四边相等的四边形

C.梯形

D.平行四边形答案:B44.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()

A向东南航行km

B.向东南航行2km

C.向东北航行km

D.向东北航行2km答案:A45.读下面的程序:

上面的程序在执行时如果输入6,那么输出的结果为()

A.6

B.720

C.120

D.1答案:B46.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是______.答案:依题意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故为:h1?cotθ1+h2?cotθ2≤2a47.已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.答案:略解析:证:如图,设,分别是的外接圆和内切圆半径,延长交于,则,,延长交于;则,即;过分别作的切线,在上,连,则平分,只要证,也与相切;设,则是的中点,连,则,,,所以,由于在角的平分线上,因此点是的内心,(这是由于,,而,所以,点是的内心).即弦与相切.48.已知G是△ABC的重心,过G的一条直线交AB、AC两点分别于E、F,且有AE=λAB,AF=μAC,则1λ+1μ=______.答案:∵G是△ABC的重心∴取过G平行BC的直线EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故为349.用数学归纳法证明:1n+1+1n+2+1n+3+…+1n+n>1124

(n∈N,n≥1)答案:证明:(1)当n=1时,左边=12>1124,∴n=1时成立(2分)(2)假设当n=k(k≥1)时成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么当n=k+1时,左边=1k+2+1k+3+…+1k+k

+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1

+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n≥1都成立(8分)50.如图:已知圆上的弧

AC=

BD,过C点的圆的切线与BA的延长线交于E点,证明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)第2卷一.综合题(共50题)1.“因为指数函数y=ax是增函数(大前提),而y=(12)x是指数函数(小前提),所以函数y=(12)x是增函数(结论)”,上面推理的错误在于______(大前提、小前提、结论).答案:∵当a>1时,函数是一个增函数,当0<a<1时,指数函数是一个减函数∴y=ax是增函数这个大前提是错误的,从而导致结论错.故为:大前提.2.如图,在空间直角坐标系中,已知直三棱柱的顶点A在x轴上,AB平行于y轴,侧棱AA1平行于z轴.当顶点C在y轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()

A.该三棱柱主视图的投影不发生变化

B.该三棱柱左视图的投影不发生变化

C.该三棱柱俯视图的投影不发生变化

D.该三棱柱三个视图的投影都不发生变化

答案:B3.不等式log32x-log3x2-3>0的解集为()

A.(,27)

B.(-∞,-1)∪(27,+∞)

C.(-∞,)∪(27,+∞)

D.(0,)∪(27,+∞)答案:D4.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()

A.外切

B.内切

C.外离

D.内含答案:A5.一个算法的流程图如图所示,则输出S的值为

.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.6.当a≠0时,y=ax+b和y=bax的图象只可能是()

A.

B.

C.

D.

答案:A7.与函数y=x相等的函数是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:对于A,f(x)=x(x≥0),不符合;对于B,f(x)=x(x≠0),不符合;对于C,f(x)=|x|(x∈R),不符合;对于D,f(x)=x(x∈R),符合;故选D.8.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知选C.故选C9.甲乙两人在罚球线投球命中的概率为,甲乙两人在罚球线上各投球一次,则恰好两人都中的概率为()

A.

B.

C.

D.答案:A10.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.11.在平面直角坐标系xOy中,点P的坐标为(-1,1),若取原点O为极点,x轴正半轴为极轴,建立极坐标系,则在下列选项中,不是点P极坐标的是()

A.()

B.()

C.()

D.()答案:D12.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提错都导致结论错答案:A13.正方形ABCD的边长为1,=,=,则|+|=(

A.0

B.2

C.

D.2答案:C14.(选做题)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃,精确度要求±1℃,用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为(

)。答案:715.给出命题:

①线性回归分析就是由样本点去寻找一条贴近这些点的直线;

②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;

③通过回归方程=bx+a及其回归系数b可以估计和预测变量的取值和变化趋势;

④线性相关关系就是两个变量间的函数关系.其中正确的命题是(

A.①②

B.①④

C.①②③

D.①②③④答案:D16.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)•(b1+b2+…+bnn).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.答案:证明不妨设a1≤a2≤…≤an,b1≥b2≥…≥bn.则由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.将上述n个式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式两边除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等号当且仅当a1=a2=…=an或b1=b2=…=bn时成立.17.△ABC所在平面内点O、P,满足OP=OA+λ(AB+12BC),λ∈[0,+∞),则点P的轨迹一定经过△ABC的()A.重心B.垂心C.内心D.外心答案:设BC的中点为D,则∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中线∴点P的轨迹一定经过△ABC的重心故选A.18.设集合A={x|},则A∩B等于(

A.

B.

C.

D.答案:B19.下面的结论正确的是()A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则答案:算法需每一步都按顺序进行,并且结果唯一,不能保证可逆,故A不正确;一个算法必须在有限步内完成,不然就不是问题的解了,故B不正确;一般情况下,完成一件事情的算法不止一个,但是存在一个比较好的,故C不正确;设计算法要尽量运算简单,节约时间,故D正确,故选D.20.若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是()A.2B.2.5C.5D.10答案:设母线长为l,则S侧=π(1+3)l=4πl.S上底+S下底=π?12+π?32=10π.据题意4πl=20π即l=5,故选C.21.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.22.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为______.答案:方程x2+my2=1变为x2+y21m=1∵焦点在y轴上,长轴长是短轴长的两倍,∴1m=2,解得m=14故应填1423.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()

A.l1和l2必定平行

B.l1与l2必定重合

C.l1和l2有交点(s,t)

D.l1与l2相交,但交点不一定是(s,t)答案:C24.棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()

A.

B.1

C.1+

D.答案:D25.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因为直线的斜率是其倾斜角的正切值,当倾斜角大于90°小于180°时,斜率为负值,当倾斜角大于0°小于90°时斜率为正值,且正切函数在(0°,90°)上为增函数,由图象三条直线的倾斜角可知,k2<k1<k3.故选C.26.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.27.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()

A.10种

B.20种

C.25种

D.32种答案:D28.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()

A.

B.

C.

D.答案:C29.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A30.已知P(x,y)是椭圆x24+y2=1上的点,求M=x+2y的取值范围.答案:∵x24+y2=1的参数方程是x=2cosθy=sinθ(θ是参数)∴设P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)

(7分)∴M=x+2y的取值范围是[-22,22].(10分)31.设a,b,c都是正数,求证:bca+cab+abc≥a+b+c.答案:证明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c当且仅当a=b=c时,等号成立.32.已知f(x)在(0,2)上是增函数,f(x+2)是偶函数,那么正确的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根据函数的图象的平移可得把f(x+2)向右平移2个单位可得f(x)的图象f(x+2)是偶函数,其图象关于y轴对称可知f(x)的图象关于x=2对称∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)单调递增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故选:B33.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()

A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分也不必要条件答案:C34.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.35.已知|a|=3,|b|=2,a与b的夹角为300,则|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a与b的夹角为300,∴a?b=|a||b|cos30°=2×3×32=3则|a+b|=a2+2a?b+b2=13故选A36.曲线(θ为参数)上的点到两坐标轴的距离之和的最大值是()

A.

B.

C.1

D.答案:D37.(1+x)6的各二项式系数的最大值是______.答案:根据二项展开式的性质可得,(1+x)6的各二项式系数的最大值C36=20故为:2038.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.39.在平面几何里,我们知道,正三角形的外接圆和内切圆的半径之比是2:1。拓展到空间,研究正四面体(四个面均为全等的正三角形的四面体)的外接球和内切球的半径关系,可以得出的正确结论是:正四面体的外接球和内切球的半径之比是(

)。答案:3:140.下列4个命题

㏒1/2x>㏒1/3x

其中的真命题是()

、A.(B.C.D.答案:D解析:取x=,则=1,=<1,p2正确当x∈(0,)时,()x<1,而>1.p4正确41.已知向量,,则“,λ∈R”成立的必要不充分条件是()

A.

B与方向相同

C.

D.答案:D42.把点按向量平移到点,则的图象按向量平移后的图象的函数表达式为(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函数解析式为43.设F为拋物线y2=ax(a>0)的焦点,点P在拋物线上,且其到y轴的距离与到点F的距离之比为1:2,则|PF|等于()

A.

B.a

C.

D.答案:D44.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.45.对任意的实数k,直线y=kx+1与圆x2+y2=2

的位置关系一定是()

A.相离

B.相切

C.相交但直线不过圆心

D.相交且直线过圆心答案:C46.如图所示的多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)

(1)求证:AE∥平面DCF;

(2)若M是AE的中点,AB=3,∠CEF=90°,求证:平面AEF⊥平面BMC.答案:(1)证法1:过点E作EG⊥CF交CF于G,连结DG,可得四边形BCGE为矩形,又四边形ABCD为矩形,所以AD=EG,从而四边形ADGE为平行四边形故AE∥DG

因为AE?平面DCF,DG?平面DCF,所以AE∥平面DCF

证法2:(面面平行的性质法)因为四边形BEFC为梯形,所以BE∥CF.又因为BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因为四边形ABCD为矩形,所以AB∥DC.同理可证AB∥平面DCF.又因为BE和AB是平面ABE内的两相交直线,所以平面ABE∥平面DCF.又因为AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中点,∴BM⊥AE,由侧视图是矩形,俯视图是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.47.下列向量组中,能作为表示它们所在平面内所有向量的基底的是()A.a=(0,0),b=(1,-2)B.a=(1,-2),b=(2,-4)C.a=(3,5),b=(6,10)D.a=(2,-3),b=(6,9)答案:可以作为基底的向量需要是不共线的向量,A中一个向量是零向量,两个向量共线,不合要求B中两个向量是a=12b,两个向量共线,C项中的两个向量也共线,故选D.48.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.

(1)求证:DE是⊙O的切线;

(2)若AB=6,AE=245,求BD和BC的长.答案:(1)证明:连接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圆中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(内错角相等,两直线平行)则由AE⊥DC知OC⊥DC即DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.49.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三个向量共面,则实数λ等于

A.

B.

C.

D.答案:D50.平面ABCD中,点A坐标为(0,1,1),点B坐标为(1,2,1),点C坐标为(-1,0,-1).若向量a=(-2,y,z),且a为平面ABC的法向量,则yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),与平面ABC垂直的向量应与上面的向量的数量积为零,向量a=(-2,y,z),且a为平面ABC的法向量,则a⊥AB且a⊥AC,即a•AB=0,且a•AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴则yz=20=1,故选C.第3卷一.综合题(共50题)1.在(x+2y)n的展开式中第六项与第七项的系数相等,求展开式中二项式系数最大的项.答案:∵在(x+2y)n的展开式中第六项与第七项的系数相等,∴Cn525=Cn626,∴n=8,∴二项式共有9项,最中间一项的系数最大即展开式中二项式系数最大的项是第5项.2.2010年广州亚运会乒乓球男单决赛中,马龙与王皓在前三局的比分分别是9:11、11:8、11:7,已知马琳与王皓的水平相当,比赛实行“七局四胜”制,即先赢四局者胜,求(1)王皓获胜的概率;

(2)比赛打满七局的概率.(3)记比赛结束时的比赛局数为ξ,求ξ的分布列及数学期望.答案:(1)在马龙先前三局赢两局的情况下,王皓取胜有两种情况.第一种是王皓连胜三局;第二种是在第四到第六局,王皓赢了两局,第七局王皓赢.在第一种情况下王皓取胜的概率为(12)3=18;在第二种情况下王皓取胜的概率为为C23(12)3×12=316,王皓获胜的概率18+316=516;(3分)(2)比赛打满七局有两种结果:马龙胜或王皓胜.记“比赛打满七局,马龙胜”为事件A,则P(A)=C13(12)3×12=316;记“比赛打满七局,王皓胜”为事件B,则P(B)=C23(12)3×12=316;因为事件A、B互斥,所以比赛打满七局的概率为P(A)+P(B)=38.(7分)(3)比赛结束时,比赛的局数为5,6,7,则打完五局马龙获胜的概率为12×12=14;打完六局马琳获胜的概率为C12(12)2×12=14,王皓取胜的概率为(12)3=18;比赛打满七局,马龙获胜的概率为C13(12)3×12=316,王皓取胜的概率为为C23(12)3×12=316;所以ξ的分布列为ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)3.设是的相反向量,则下列说法一定错误的是()

A.∥

B.与的长度相等

C.是的相反向量

D.与一定不相等答案:D4.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是______.答案:由题意可得2b=2a2+b2=(5)2,解得b=1a=2.故椭圆的标准方程是x24+y2=1或y24+x2=1.故为x24+y2=1或y24+x2=1.5.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()

①结论相反的判断,即假设

②原命题的条件

③公理、定理、定义等

④原结论

A.①②

B.①②④

C.①②③

D.②③答案:C6.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()

A.35

B.25

C.15

D.7答案:C7.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()

A.

B.

C.

D.

答案:A8.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台,问此样本若采用简单的随机抽样方法将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号001,002,112…用抽签法做112个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取10次,就得到一个容量为10的样本.9.设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.答案:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB为直径的圆与左准线相离.10.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由题意可得,对于函数,当x=100时,y=95.76%=0.9576,结合选项检验选项A:x=100,y=0.0424,故排除A选项B:x=100,y=0.9576,故B正确故选:B解析:已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x11.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且对任意m、n∈N*都有:

①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).给出以下四个结论:

(1)f(1,2)=3;

(2)f(1,5)=9;

(3)f(5,1)=16;

(4)f(5,6)=26.其中正确的为______.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正确(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正确(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正确(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正确故为(1)(2)(3)(4)12.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是

______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:4813.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“______”.答案:在由平面图形的性质向空间物体的性质进行类比时,我们常用由平面图形中线的性质类比推理出空间中面的性质,故由平面几何中的命题:“夹在两条平行线这间的平行线段相等”,我们可以推断在立体几何中:“夹在两个平行平面间的平行线段相等”这个命题是一个真命题.故为:“夹在两个平行平面间的平行线段相等”.14.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).15.用反证法证明命题“在函数f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一个不小于”时,假设正确的是()

A.假设|f(1)|,|f(2)|,|f(3)|至多有一个小于

B.假设|f(1)|,|f(2)|,|f(3)|至多有两个小于

C.假设|f(1)|,|f(2)|,|f(3)|都不小于

D.假设|f(1)|,|f(2)|,|f(3)|都小于答案:D16.若动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(0≤a≤2),试求动点P的轨迹.答案:①当a=0时,||PF1|-|PF2||=0,从而|PF1|=|PF2|,所以点P的轨迹为直线:线段F1F2的垂直平分线.②当a=2时,||PF1|-|PF2||=2=|F1F2|,所以点P的轨迹为两条射线.③当0<a<2时,||PF1|-|PF2||=a<|F1F2|,所以点P的轨迹是以F1、F2为焦点的双曲线.17.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为

______.答案:根据题意:黄豆落在阴影部分的概率是138300矩形的面积为10,设阴影部分的面积为s则有s10=138300∴s=235故为:23518.下列程序表示的算法是辗转相除法,请在空白处填上相应语句:

(1)处填______;

(2)处填______.答案:∵程序表示的算法是辗转相除法,根据辗转相除法,先求出m除以n的余数,然后利用辗转相除法,将n的值赋给m,将余数赋给n,一直算到余数为零时m的值即可,∴(1)处应该为r=mMODn;(2)处应该为r=0.故为r=mMODn;r=0.19.如图是一个正三棱柱体的三视图,该柱体的体积等于()A.3B.23C.2D.33答案:根据长对正,宽相等,高平齐,可得底面正三角形高为3,三棱柱高为1所以正三角形边长为3sin60°=2,所以V=12×2×3×1=3,故选A.20.在y=2x,y=log2x,y=x2,y=cosx这四个函数中,当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立的函数的个数是()A.0B.1C.2D.3答案:当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立,说明函数一个递增的越来越慢的函数或者是一个递减的越来越快的函数或是一个先递增得越来越慢,再递减得越来越快的函数考查四个函数y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是递增得越来越慢型,函数y=cosx在(0,1)是递减得越来越快型,y=2x,y=x2,这两个函数都是递增得越来越快型综上分析知,满足条件的函数有两个故选C21.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故选B.22.设、、为实数,,则下列四个结论中正确的是(

)A.B.C.且D.且答案:D解析:若,则,则.若,则对于二次函数,由可得结论.23.若回归直线方程中的回归系数b=0时,则相关系数r=______.答案:由于在回归系数b的计算公式中,与相关指数的计算公式中,它们的分子相同,故为:0.24.设向量a,b的夹角为60°的单位向量,则向量2a+b的模为()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模为7故选B25.甲、乙两人破译一种密码,它们能破译的概率分别为和,求:

(1)恰有一人能破译的概率;(2)至多有一人破译的概率;

(3)若要破译出的概率为不小于,至少需要多少甲这样的人?答案:(1)(2)(3)至少需4个甲这样的人才能满足题意.解析:(1)设A为“甲能译出”,B为“乙能译出”,则A、B互相独立,从而A与、与B、与均相互独立.“恰有一人能译出”为事件,又与互斥,则(2)“至多一人能译出”的事件,且、、互斥,∴(3)设至少需要n个甲这样的人,而n个甲这样的人译不出的概率为,∴n个甲这样的人能译出的概率为,由∴至少需4个甲这样的人才能满足题意.26.“sinx=siny”是“x=y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反过来,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分条件.故选C.27.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A.1条B.2条C.3条D.4条答案:分别以A、B为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求.故选B.28.已知f(x)在(0,2)上是增函数,f(x+2)是偶函数,那么正确的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根据函数的图象的平移可得把f(x+2)向右平移2个单位可得f(x)的图象f(x+2)是偶函数,其图象关于y轴对称可知f(x)的图象关于x=2对称∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)单调递增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故选:B29.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,a∈R;m≠0时,a∈[-1,1].30.设D为△ABC的边AB上一点,P为△ABC内一点,且满足AD=23AB,AP=AD+14BC,则S△APDS△ABC=()A.29B.16C.754D.427答案:由题意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故选B.31.(本小题满分10分)数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1000的所有“水仙花数”.

(1)用自然语言写出算法;

(2)画出流程图.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,则执行第三步,否则算法结束.第三步,若这个数i等于它各位上的数字的立方的和,则输出这个数.第四步,i=i+1,返回第二步.(2)程序框图,如右图所示.32.如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若∠D=20°,则∠DBE的大小为()

A.20°

B.40°

C.60°

D.70°答案:D33.一元二次不等式ax2+bx+c≤0的解集是全体实数所满足的条件是(

)

A.

B.

C.

D.答案:D34.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;

⑤a=b.其中可能成立的关系式有()

A.①②③

B.①②⑤

C.①③⑤

D.③④⑤答案:B35.在数列{an}中,a1=1,an+1=2an2+an(n∈N+),

(1)求a1,a2,a3并猜想数列{an}的通项公式;

(2)证明上述猜想.答案:(1)a1=1.a2=2a12+a1=22+1=23.a3=2a22+a2=2×232+23=12(2)猜想an=2n+1.证明:当n=1时显然成立.假设当n=k(k≥1)时成立,即ak=2k+1则当n=k+1时,ak+1=2ak2+ak=2×2k+12+2k+1=42k+4=2(k+1)+1所以an=2n+1.36.椭圆的长轴长为10,短轴长为8,则椭圆上的点到椭圆中心的距离的取值范围是______.答案:椭圆上的点到圆心的最小距离为短半轴的长度,最大距离为长半轴的长度因为椭圆的长轴长为10,短轴长为8,所以椭圆上的点到圆心的最小距离为4,最大距离为5所以椭圆上的点到椭圆中心距离的取值范围是[4,5]故为:[4,5]37.=(2,1),=(3,4),则向量在向量方向上的投影为()

A.

B.

C.2

D.10答案:C38.若矩阵A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论