版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年巴中职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.口袋中装有三个编号分别为1,2,3的小球,现从袋中随机取球,每次取一个球,确定编号后放回,连续取球两次.则“两次取球中有3号球”的概率为()A.59B.49C.25D.12答案:每次取球时,出现3号球的概率为13,则两次取得球都是3号求得概率为C22?(13)2=19,两次取得球只有一次取得3号求得概率为C12?13?23=49,故“两次取球中有3号球”的概率为19+49=59,故选A.2.已知点A(-1,-2),B(2,3),若直线l:x+y-c=0与线段AB有公共点,则直线l在y轴上的截距的取值范围是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A3.已知a,b是非零向量,且a,b夹角为π3,则向量p=a丨a丨+b丨b丨的模为______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|
|b|cosπ3=12|a|
|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故为3.4.下列函数图象中,正确的是()
A.
B.
C.
D.
答案:C5.将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:
(1)共有多少种不同的结果?并试着列举出来.
(2)两粒骰子点数之和等于3的倍数的概率;
(3)两粒骰子点数之和为4或5的概率.答案:(1)每一粒均匀的骰子抛掷一次,都有6种结果,根据分步计数原理,所有可能结果共有6×6=36种.
…(4分)(2)两粒骰子点数之和等于3的倍数的有以下12种:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12个结果,因此,两粒骰子点数之和等于3的倍数的概率是1236=13.
…(8分)(3)两粒骰子点数之和为4或5的有以下7种:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,两粒骰子点数之和为4或5的概率为736.
…(12分)6.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0
(1)证明:1a是f(x)的一个根;(2)试比较1a与c的大小.答案:证明:(1)∵f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,f(x)=0的两个根x1,x2满足x1x2=ca,又f(c)=0,不妨设x1=c∴x2=1a,即1a是f(x)=0的一个根.(2)假设1a<c,又1a>0由0<x<c时,f(x)>0,得f(1a)>0,与f(1a)=0矛盾∴1a≥c又:f(x)=0的两个根不相等∴1a≠c,只有1a>c7.关于斜二测画法画直观图说法不正确的是()
A.在实物图中取坐标系不同,所得的直观图有可能不同
B.平行于坐标轴的线段在直观图中仍然平行于坐标轴
C.平行于坐标轴的线段长度在直观图中仍然保持不变
D.斜二测坐标系取的角可能是135°答案:C8.两个正方体M1、M2,棱长分别a、b,则对于正方体M1、M2有:棱长的比为a:b,表面积的比为a2:b2,体积比为a3:b3.我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是()
A.两个球
B.两个长方体
C.两个圆柱
D.两个圆锥答案:A9.读下面的程序:
上面的程序在执行时如果输入6,那么输出的结果为()
A.6
B.720
C.120
D.1答案:B10.圆C1:x2+y2-6x+6y-48=0与圆C2:x2+y2+4x-8y-44=0公切线的条数是()
A.0条
B.1条
C.2条
D.3条答案:C11.某程序框图如图所示,该程序运行后输出的k的值是()A.4B.5C.6D.7答案:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环
S
K循环前/0
0第一圈
是
1
1第二圈
是
3
2第三圈
是
11
3第四圈
是
20594第五圈
否∴最终输出结果k=4故为A12.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(
)
A.点在圆上
B.点在圆内
C.点在圆外
D.不能确定答案:C13.圆x2+y2-6x+4y+12=0与圆x2+y2-14x-2y+14=0的位置关系是______.答案:∵圆x2+y2-6x+4y+12=0化成标准形式,得(x-3)2+(y+2)2=1∴圆x2+y2-6x+4y+12=0的圆心为C1(3,-2),半径r1=1同理可得圆x2+y2-14x-2y+14=0的C2(7,1),半径r2=6∵两圆的圆心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得两圆的位置关系是内切故为:内切14.如图所示,正方体的棱长为1,点A是其一棱的中点,则点A在空间直角坐标系中的坐标是()
A.(,,1)
B.(1,1,)
C.(,1,)
D.(1,,1)
答案:B15.不等式的解集是(
)
A.(-3,2)
B.(2,+∞)
C.(-∞,-3)∪(2,+∞)
D.(-∞,-3)∪(3,+∞)答案:C16.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:117.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D18.参数方程(t是参数)表示的图象是()
A.射线
B.直线
C.圆
D.双曲线答案:A19.O是正六边形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O为端点的向量中:
(1)与a相等的向量有
______;
(2)与b相等的向量有
______;
(3)与c相等的向量有
______.答案:如图,在O是正六边形ABCDE的中心,以A,B,C,D,E,O为端点的向量中(1)与a相等的向量有EF,DO,CB;(2)与b相等的向量有DC,EO,FA;(3)与c相等的向量有FO,OC,ED.故三个空依次应填EF,DO,CB;DC,EO,FA;FO,OC,ED.20.(选做题)已知x+2y=1,则x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上点的距离的平方∴x2+y2的最小值是(0,0)到x+2y=1的距离d的平方据点到直线的距离公式得d=11+4=15∴x2+y2的最小值是15故为1521.已知抛物线y2=4x上两定点A、B分别在对称轴两侧,F为焦点,且|AF|=2,|BF|=5,在抛物线的AOB一段上求一点P,使S△ABP最大,并求面积最大值.答案:不妨设点A在第一象限,B点在第四象限.如图.抛物线的焦点F(1,0),点A在第一象限,设A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直线AB的方程为y-2-4-2=x-14-1,化简得2x+y-4=0.…(8分)再设在抛物线AOB这段曲线上任一点P(x0,y0),且0≤x0≤4,-4≤y0≤2.则点P到直线AB的距离d=|2x0+y0-4|1+4=|2×y0
24+y0-4|5=|12(y0+1)2-92|5
…(9分)所以当y0=-1时,d取最大值9510,…(10分)所以△PAB的面积最大值为S=12×35×9510=274
…(11分)此时P点坐标为(14,-1).…(12分).22.若正四面体ABCD的棱长为1,M是AB的中点,则MC
•MD
=______.答案:在正四面体中,因为M是AB的中点,所以CM=12(CA+CB),DM=12(DA+DB),所以CM⋅DM=12(CA+CB)⋅12(DA+DB)=14(CA⋅DA+CB⋅DA+CA⋅DB+CB⋅DB)=14(1×1×cos60∘+0+0+1×1×cos60∘)=14×1=14.所以MC
•MD
=CM⋅DM=14.故为:
1
4
.23.下列命题中正确的是()
A.若,则
B.若,则
.若,则
D.若,则答案:C24.在正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值是______.答案:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)设n=(x,y,z)是平面A1BD的一个法向量,则n•A1D=-x-z=0n•BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一个法向量为n=(1,-1,-1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<BC1,n>|=BC1•n|BC1|•n=63∴cosθ=1-sin2θ=33,即直线BC1与平面A1BD所成角的余弦值是33故为:3325.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验()
A.H0:男性喜欢参加体育活动
B.H0:女性不喜欢参加体育活动
C.H0:喜欢参加体育活动与性别有关
D.H0:喜欢参加体育活动与性别无关答案:D26.下列给出的输入语句、输出语句和赋值语句
(1)输出语句INPUT
a;b;c
(2)输入语句INPUT
x=3
(3)赋值语句3=B
(4)赋值语句A=B=2
则其中正确的个数是()
A.0个
B.1个
C.2个
D.3个答案:A27.设函数f(x)=(1-2a)x+b是R上的增函数,则()A.a>12B.a<12C.a≥12D.a≤12答案:∵函数f(x)=(1-2a)x+b是R上的增函数,∴1-2a>0,∴a<12.故选B.28.已知向量a与向量b的夹角为120°,若向量c=a+b,且a⊥c,则|a||b|的值为______.答案:由题意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故为:1229.请输入一个奇数n的BASIC语句为______.答案:INPUT表示输入语句,输入一个奇数n的BASIC语句为:INPUT“输入一个奇数n”;n.故为:INPUT“输入一个奇数n”;n.30.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.31.已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,π3),则|CP|=______.答案:圆的极坐标方程为ρ=4cosθ,圆的方程为:x2+y2=4x,圆心为C(2,0),点P的极坐标为(4,π3),所以P的直角坐标(2,23),所以|CP|=(2-2)2+(23-0)2=23.故为:23.32.下列函数中,与函数y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函数y=x的定义域为R,选项中A,D定义域不是R,是A、D不正确.选项C的对应法则不同,C不正确.故选B.33.已知P(B|A)=,P(A)=,则P(AB)等于()
A.
B.
C.
D.答案:C34.执行如图的程序框图,若p=15,则输出的n=______.答案:当n=1时,S=2,n=2;当n=2时,S=6,n=3;当n=3时,S=14,n=4;当n=4时,S=30,n=5;故最后输出的n值为5故为:535.设A、B、C表示△ABC的三个内角的弧度数,a,b,c表示其对边,求证:aA+bB+cCa+b+c≥π3.答案:证明:法一、不妨设A>B>C,则有a>b>c由排序原理:顺序和≥乱序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨设A>B>C,则有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.36.圆心既在直线x-y=0上,又在直线x+y-4=0上,且经过原点的圆的方程是______.答案:∵圆心既在直线x-y=0上,又在直线x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圆心坐标为(2,2),∵圆经过原点,∴半径r=22,故所求圆的方程为(x-2)2+(y-2)2=8.37.在5件产品中,有3件一等品,2件二等品.从中任取2件.那么以710为概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件产品中,有3件一等品和2件二等品,从中任取2件,从5件产品中任取2件,共有C52=10种结果,∵“任取的2件产品都不是一等品”只有1种情况,其概率是110;“任取的2件产品中至少有一件二等品”有C31C21+1种情况,其概率是710;“任取的2件产品中恰有一件一等品”有C31C21种情况,其概率是610;“任取的2件产品在至少有一件一等品”有C31C21+C32种情况,其概率是910;∴以710为概率的事件是“至少有一件二等品”.故为B.38.设向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,则|a+b|的最大值为
______.答案:|a|=1因为|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因为0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故为:239.已知向量p=a|a|+2b|b|,其中a、b均为非零向量,则|p|的取值范围是
______.答案:∵|a|a||=1,|2b|b||=2
∴p2=|p|2=1+4+4a|a|?b|b|?cos<a|a|,2b|b|>=5+4?cos<a|a|,2b|b|>∈[1,9],开方可得
|p|的取值范围[1,3],故为[1,3].40.已知向量a=(2,0),b=(1,x),且a、b的夹角为π3,则x=______.答案:由两个向量的数量积的定义、数量积公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故为±3.41.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2
又M(1,1)为线段AB的中点∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在42.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.43.一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为()A.圆B.抛物线C.双曲线D.椭圆答案:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与高的夹角的正弦值=rR=12,∴母线与高的夹角是30°.由于平面α与圆锥的轴成45°>30°;则平面α与该圆锥侧面相交的交线为椭圆.故选D.44.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是
______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1545.如图中的阴影部分用集合表示为______.答案:由已知中阴影部分所表示的集合元素满足是A的元素且C的元素,或是B的元素”,故阴影部分所表示的集合是(A∪C)∩(CUB)故为:B∪(A∩C)46.点(1,2)到直线x+2y+5=0的距离为______.答案:点(1,2)到直线x+2y+5=0的距离为d=|1+2×2+5|12+22=25故为:2547.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,则实数a的取值范围是______.答案:椭圆x2+4(y-a)2=4与抛物线x2=2y联立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵两根皆负时,由韦达定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根时,-1≤a≤178故为:-1≤a≤17848.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.49.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D50.如图,在正方体ABCD-A1B1C1D1中,M、N分别为AB、B1C的中点.用AB、AD、AA1表示向量MN,则MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故为12AB+12AD+12AA1.第2卷一.综合题(共50题)1.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.2.若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于
A.2
B.
C.4
D.答案:A3.设a=log32,b=log23,c=,则()
A.c<b<a
B.a<c<b
C.c<a<b
D.b<c<a答案:C4.已知x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,则a+b=______.答案:∵x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,∴(-3-2i)2+a(-3-2i)+b=0,化为5-3a+b+(12-2a)i=0.根据复数相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故为19.5.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()
A.甲科总体的标准差最小
B.丙科总体的平均数最小
C.乙科总体的标准差及平均数都居中
D.甲、乙、丙的总体的平均数不相同
答案:A6.证明不等式的最适合的方法是()
A.综合法
B.分析法
C.间接证法
D.合情推理法答案:B7.执行程序框图,如果输入的n是5,则输出的p是()
A.1
B.2
C.3
D.5
答案:D8.关于x的方程ax+b=0,当a,b满足条件______
时,方程的解集是有限集;满足条件______
时,方程的解集是无限集;满足条件______
时,方程的解集是空集.答案:关于x的方程ax+b=0,有一个解时,为有限集,所以a,b满足条件是:a≠0,b∈R;满足条件a=0,b=0时,方程有无数组解,方程的解集是无限集;满足条件
a=0,b≠0
时,方程无解,方程的解集是空集.故为:a≠0,b∈R;a=0,b=0;
a=0,b≠0.9.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则集合A∩B中的元素个数为(
)
A.0个
B.1个
C.2个
D.无穷多个答案:C10.离心率e=23,短轴长为85的椭圆标准方程为______.答案:离心率e=23,短轴长为85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以椭圆标准方程为x2144+y280=1或y2144+x280=1故为x2144+y280=1或y2144+x280=111.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()
A.圆
B.椭圆
C.双曲线的一支
D.抛物线答案:A12.如图,在直角坐标系中,A,B,C三点在x轴上,原点O和点B分别是线段AB和AC的中点,已知AO=m(m为常数),平面上的点P满足PA+PB=6m.
(1)试求点P的轨迹C1的方程;
(2)若点(x,y)在曲线C1上,求证:点(x3,y22)一定在某圆C2上;
(3)过点C作直线l,与圆C2相交于M,N两点,若点N恰好是线段CM的中点,试求直线l的方程.答案:(1)由题意可得点P的轨迹C1是以A,B为焦点的椭圆.…(2分)且半焦距长c=m,长半轴长a=3m,则C1的方程为x29m2+y28m2=1.…(5分)(2)若点(x,y)在曲线C1上,则x29m2+y28m2=1.设x3=x0,y22=y0,则x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以点(x3,y22)一定在某一圆C2上.…(10分)(3)由题意C(3m,0).…(11分)设M(x1,y1),则x12+y12=m2.…①因为点N恰好是线段CM的中点,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②联立①②,解得x1=-m,y1=0.…(15分)故直线l有且只有一条,方程为y=0.…(16分)(若只写出直线方程,不说明理由,给1分)13.双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若AP•AQ=0,求直线PQ的方程.答案:解.(Ⅰ)由题意,设曲线的方程为x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以双曲线的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,AP•AQ≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).由方程组x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)设P(x1,y1),Q(x2,y2),则x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP•AQ=0,∴(x1-1,y1)•(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22满足(*)∴直线PQ的方程为x-2y-3=0或x+2y-3=014.(本小题满分10分)数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1000的所有“水仙花数”.
(1)用自然语言写出算法;
(2)画出流程图.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,则执行第三步,否则算法结束.第三步,若这个数i等于它各位上的数字的立方的和,则输出这个数.第四步,i=i+1,返回第二步.(2)程序框图,如右图所示.15.求下列函数的定义域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函数y=234x+1有意义,只需4x+1≠0,即x≠-14,所以,函数的定义域为{x|x≠-14}.设y=2u,u=34x+1≠0,则u>0,由函数y=2u,得y≠20=1,所以函数的值域为{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函数的定义域为{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函数的值域为[0,2).16.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为______.答案:两人都投中1次的概率为C210.6×0.4×C210.7×0.3=0.2016故为:0.201617.在极坐标系中,圆ρ=2cosθ与方程θ=(ρ>0)所表示的图形的交点的极坐标是(
)
A.(1,1)
B.(1,)
C.(,)
D.(,)答案:C18.当x∈N+时,用“>”“<”或“=”填空:
(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根据指数函数的性质得,当x∈N+时,(12)x<1,2x>1,则2x>(12)x,且2x<3x,则(12)x>(13)x,故为:<、>、<、>、<.19.
以下四组向量中,互相平行的有()组.
A.一
B.二
C.三
D.四答案:D20.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.21.集合{x∈N*|
12
x
∈Z}中含有的元素个数为()
A.4
B.6
C.8
D.12答案:B22.设ABC是坐标平面上的一个三角形,P为平面上一点且AP=15AB+25AC,则△ABP的面积△ABC的面积=()A.12B.15C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C23.用演绎法证明y=x2是增函数时的大前提是______.答案:∵证明y=x2是增函数时,依据的原理就是增函数的定义,∴用演绎法证明y=x2是增函数时的大前提是:增函数的定义故填增函数的定义24.极坐标系中,若A(3,π3),B(-3,π6),则s△AOB=______(其中O是极点).答案:∵极坐标系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐标系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故为:94.25.甲、乙、丙、丁四名射击选手在选拨赛中所得的平均环数,其方差S2如下表所示,则选送参加决赛的最佳人选是()
甲
乙
丙
丁
8
9
9
8
S2
5.7
6.2
5.7
6.4
A.甲
B.乙
C.丙
D.丁答案:C26.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么b、c中至少有一个偶数时,下列假设正确的是()
A.假设a、b、c都是偶数
B.假设a、b、c都不是偶数
C.假设a、b、c至多有一个偶数
D.假设a、b、c至多有两个偶数答案:B27.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()
A.45°
B.30°
C.60°
D.90°答案:D28.已知双曲线x2-y23=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为______.答案:设A(x1,y1)、B(x2,y2),代入双曲线方程x2-y23=1相减得直线AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故为:629.若集合A={x|3≤x<7},B={x|2<x<10},则A∪B=______.答案:因为集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故为:{x|2<x<10}.30.若一次函数y=mx+b在(-∞,+∞)上是增函数,则有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函数y=mx+b在(-∞,+∞)上是增函数,∴一次项系数m>0,故选C.31.若a2+b2+c2=1,则a+2b+3c的最大值为______.答案:因为已知a、b、c是实数,且a2+b2+c2=1根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值为14.故为:14.32.如图是容量为150的样本的频率分布直方图,则样本数据落在[6,10)内的频数为()A.12B.48C.60D.80答案:根据频率分布直方图,样本数据落在[6,10)内的频数为0.08×4×150=48故选B.33.平面向量a与b的夹角为60°,a=(2,0),|b|=1
则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1
∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.34.已知点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,则|PF|的长为______.答案:∵抛物线x=4t2y=4t(t为参数)上,∴y2=4x,∵点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故为4.35.参数方程,(θ为参数)表示的曲线是()
A.直线
B.圆
C.椭圆
D.抛物线答案:C36.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:537.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为()
A.0.9
B.0.5
C.0.6
D.0.8答案:D38.已知定点A(2,0),圆O的方程为x2+y2=8,动点M在圆O上,那么∠OMA的最大值是()
A.
B.
C.arccos
D.arccos答案:B39.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦点在y轴上的椭圆∴2k>2故0<k<1故选D.40.不等式0.52x>0.5x-1的解集为______.答案:由于函数y=0.5x
是R上的减函数,故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集为(-∞,-1),故为(-∞,-1).41.已知点A(1,-2,0)和向量a=(-3,4,12),若AB=2a,则点B的坐标为______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵点A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故为:(-5,6,24)42.直线(t为参数)和圆x2+y2=16交于A,B两点,则AB的中点坐标为()
A.(3,-3)
B.(-,3)
C.(,-3)
D.(3,-)答案:D43.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提错都导致结论错答案:A44.圆的极坐标方程是ρ=2cosθ+2sinθ,则其圆心的极坐标是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A45.“若x、y全为零,则xy=0”的否命题为______.答案:由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.故为:若x、y不全为零,则xy≠0.46.设a=20.3,b=0.32,c=log20.3,则用“>”表示a,b,c的大小关系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故为:a>b>c47.集合{1,2,3}的真子集总共有()A.8个B.7个C.6个D.5个答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选B.48.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.
(1)写出直线l的直角坐标方程和圆C的普通方程;
(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)49.盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A与B是否相互独立,说明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.50.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:23第3卷一.综合题(共50题)1.为如图所示的四块区域涂色,要求相邻区域不能同色,现有3种不同颜色可供选择,则共有______种不同涂色方案(要求用具体数字作答).答案:由题意,首先给左上方一个涂色,有三种结果,再给最左下边的上面的涂色,有两种结果,右上方,如果与左下边的同色,则右方的涂色,有两种结果,右上方,如果与左下边的不同色,则右方的涂色,有1种结果,∴根据分步计数原理得到共有3×2×(2+1)=18种结果,故为18.2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()
A.511个
B.512个
C.1023个
D.1024个答案:B3.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.4.(理)
设O为坐标原点,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,则当QA•QB取得最小值时,点Q的坐标为______.答案:∵OP=(1,1,2),点Q在直线OP上运动,设OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)则QA•QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得当λ=43时,QA•QB取得最小值.此时Q的坐标为(43,43,83)故为:(43,43,83)5.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故选B.6.用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面向上的次数为ξ;乙抛掷3次,记正面向上的次数为η.
(Ⅰ)分别求ξ和η的期望;
(Ⅱ)规定:若ξ>η,则甲获胜;否则,乙获胜.求甲获胜的概率.答案:(Ⅰ)由题意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲获胜有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3则甲获胜的概率为P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)7.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函数y=1x定义域为x>0,又函数f(x)=log2x定义域x>0,故选A.8.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A9.已知正方形的边长为2,AB=a,BC=b,AC=c,则|a+b+c|=()A.0B.2C.2D.4答案:由题意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因为正方形的边长为2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故选D.10.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.11.已知点A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q.
(1)证明点Q的轨迹是双曲线,并求出轨迹方程.
(2)若(BQ+BA)•QA=0,求点Q的坐标.答案:(1)∵点Q在线段AP的垂直平分线上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴点Q的轨迹是以A、B为焦点的双曲线.(4′)其轨迹方程是x29-y216=1.(7′)(2)以A、B、Q为三个顶点作平行四边形ABQC,则BQ+BA=BC∵(BQ+BA)•QA=0,∴BC•QC=0,∴平行四边形ABQC是菱形,∴|BA|=|BQ|.(8′)∴点Q在圆(x+5)2+y2=100上.解方程组(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)12.抛物线y2=8x的焦点坐标是______答案:抛物线y2=8x,所以p=4,所以焦点(2,0),故为(2,0)..13.定义在R上的二次函数y=f(x)在(0,2)上单调递减,其图象关于直线x=2对称,则下列式子可以成立的是()
A.
B.
C.
D.答案:D14.
已知抛物线y2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限,若,,,则μ的取值范围是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B15.在空间中,有如下命题:
①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;
②若平面α∥平面β,则平面α内任意一条直线m∥平面β;
③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.
其中正确命题的个数为()个.
A.0
B.1
C.2
D.3答案:B16.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()
A.0<a<1
B.a=1
C.a>1
D.以上均不对答案:C17.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(
)
A.17
B.18
C.19
D.20答案:C18.设随机事件A、B,P(A)=35,P(B|A)=12,则P(AB)=______.答案:由条件概率的计算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故为310.19.观察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5个等式应为______.答案:由题意,(i)等式左边为一段连续自然数之和,且最后一个和数恰为各等式序号的立方,最前一个和数恰为等式序号减1平方加1;(ii)等式右边均为两数立方和,且也与等式序号具有明显的相关性.故猜想第5个等式应为17+18+19+20+21+22+23+24+25=64+125故为:17+18+19+20+21+22+23+24+25=64+12520.(选做题)
曲线(θ为参数)与直线y=a有两个公共点,则实数a的取值范围是(
).答案:0<a≤121.构成多面体的面最少是(
)
A.三个
B.四个
C.五个
D.六个答案:B22.某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.非上述答案答案:本题符合系统抽样的特征:总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式.故选B.23.若P(A∪B)=P(A)+P(B)=1,则事件A与事件B的关系是()
A.互斥事件
B.对立事件
C.不是互斥事件
D.前者都不对答案:D24.已知定点A(2,0),圆O的方程为x2+y2=8,动点M在圆O上,那么∠OMA的最大值是()
A.
B.
C.arccos
D.arccos答案:B25.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°26.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于随机数表中第8行的数字为:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10527.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为______.答案:如下图所示,当蚂蚁位于图中红色线段上时,距离三角形的三个顶点的距离均超过1,由已知易得:红色线段的长度和为:6三角形的周长为:12故P=612=12故为:1228.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.29.已知直线的倾斜角为α,且cosα=45,则此直线的斜率是______.答案:∵直线l的倾斜角为α,cosα=45,∴α的终边在第一象限,故sinα=35故l的斜率为tanα=sinαcosα=34故为:3430.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离为
______.答案:M为AB的中点设为(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)
2
+33=532,故为:532.31.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()
A.分析发
B.综合法
C.综合法、分析法结合使用
D.间接证法答案:B32.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.33.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.34.在平面直角坐标系xOy中,已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美容用人合同范本
- 项目担保合同范本
- 版权入股 合同范本
- 餐具的环保合同范本
- 全职托管合同范本
- 二零二四年度大型广告牌拆除合同
- 高可靠性封装技术
- 用车抵债合同范本
- 房租催收合同范本
- 联合疫苗在肺炎和流感预防中的应用
- 打印版大学生择业效能感量表龙燕梅
- 工程施工现场应急方案
- 人教版小学道德与法治感受生活中的法律教学设计省一等奖
- 【大数据时代个人隐私保护的法律对策6200字(论文)】
- 平行四边形面积的计算课件(共27张PPT)五年级上册数学人教版
- 监理日常安全巡视要点监理日常安全巡视要点
- 法律顾问服务职业发展研究报告
- 展厅设计布展投标方案(完整技术标)
- 静脉中等长度导管临床应用专家共识-
- 2023年辽宁省新高考历史试卷(含解析)
- 企业内部控制风险清单模版
评论
0/150
提交评论