版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年山东医学高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.点(2,0,3)在空间直角坐标系中的位置是在()
A.y轴上
B.xOy平面上
C.xOz平面上
D.第一卦限内答案:C2.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故为:(-∞,-23)∪(2,+∞).3.设A(1,-1,1),B(3,1,5),则线段AB的中点在空间直角坐标系中的位置是()
A.在y轴上
B.在xOy面内
C.在xOz面内
D.在yOz面内答案:C4.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()
A.
B.0
C.1
D.答案:D5.如图所示,设k1,k2,k3分别是直线l1,l2,l3的斜率,则()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:C6.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()
A.511个
B.512个
C.1023个
D.1024个答案:B7.若集合S={a,b,c}(a、b、c∈R)中三个元素为边可构成一个三角形,那么该三角形一定不可能是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D8.已知事件A与B互斥,且P(A)=0.3,P(B)=0.6,则P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A与B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故为:34.9.(1+2x)6的展开式中x4的系数是______.答案:展开式的通项为Tr+1=2rC6rxr令r=4得展开式中x4的系数是24C64=240故为:24010.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1011.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x答案:C12.在正方形ABCD中,已知它的边长为1,设=,=,=,则|++|的值为(
)
A.0
B.3
C.2+
D.2答案:D13.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出的球的最大号码,则Eξ的值是()A.4B.4.5C.4.75D.5答案:由题意,ξ的取值可以是3,4,5ξ=3时,概率是1C35=110ξ=4时,概率是C23C35=310(最大的是4其它两个从1、2、3里面随机取)ξ=5时,概率是C24C35=610(最大的是5,其它两个从1、2、3、4里面随机取)∴期望Eξ=3×110+4×310+5×610=4.5故选B.14.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.15.已知a,b,c是正实数,且a+b+c=1,则的最小值为(
)A.3B.6C.9D.12答案:C解析:本题考查均值不等式等知识。将1代入中,得,当且仅当,又,故时不等式取,选C。16.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.17.1
甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为
(1)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;
(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.答案:见解析解析:解:(1)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件①②③18.从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有()A.120个B.480个C.720个D.840个答案:要选取5个字母时首先从其它6个字母中选3个有C63种结果,再与“qu“组成的一个元素进行全排列共有C63A44=480,故选B.19.如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=23,若∠CAP=30°,则⊙O的直径AB=______.答案:连接BC,设圆的直径是x则三角形ABC是一个含有30°角的三角形,∴BC=12AB,三角形BPC是一个等腰三角形,BC=BP=12AB,∵PC是圆的切线,PA是圆的割线,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故为:420.抽样调查在抽取调查对象时()A.按一定的方法抽取B.随意抽取C.全部抽取D.根据个人的爱好抽取答案:一般地,抽样方法分为3种:简单随机抽样、分层抽样和系统抽样无论是哪种抽样方法,都遵循机会均等的原理,即在抽样过程中,各个体被抽到的概率是相等的.根据以上分析,可知只有A项符合题意.故选:A21.已知数列{an}前n项的和为Sn,且满足an=n2
(n∈N*).
(Ⅰ)求s1、s2、s3的值;
(Ⅱ)用数学归纳法证明sn=n(n+1)(2n+1)6
(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)证明:(1)当n=1时,左边=s1=1,右边=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假设n=k(k∈N*)时结论成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1时,等式也成立.…(13分)根据(1)(2)可知对任意的正整数n∈N*都成立.…(14分)22.某校在检查学生作业时,抽出每班学号尾数为4的学生作业进行检查,这里主要运用的抽样方法是()
A.分层抽样
B.抽签抽样
C.随机抽样
D.系统抽样答案:D23.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选择C.24.已知在一个二阶矩阵M对应变换的作用下,点A(1,2)变成了点A′(7,10),点B(2,0)变成了点B′(2,4),求矩阵M.答案:设M=abcd,则abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)25.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()
A.
B.
C.
D.答案:C26.设S(n)=1n+1n+1+1n+2+1n+3+…+1n2,则()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,当n=2时,n2=4故S(2)=12+13+14故选D27.对某种花卉的开放花期追踪调查,调查情况如表:
花期(天)11~1314~1617~1920~22个数20403010则这种卉的平均花期为______天.答案:由表格知,花期平均为12天的有20个,花期平均为15天的有40个,花期平均为18天的有30个,花期平均为21天的有10个,∴这种花卉的评价花期是12×20+15×40+18×30+21×10100=16,故为:1628.已知三个向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:实数λ,μ,使p=λq+μr,则a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在实数,,使p=λq+μr,故向量p、q、r共面.29.方程x2+(m-2)x+5-m=0的两根都大于2,则m的取值范围是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A30.设a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,则实数m,n的值分别为______.答案:因为a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根据空间向量平行的坐标表示公式,
所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故为:m=12,n=6.31.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则点(a,b)在直线x+y=5左下方的概率为()A.16B.56C.112D.1112答案:由题意知本题是一个古典概型,试验发生包含的事件数是6×6=36种结果,满足条件的事件是点(a,b)在直线x+y=5左下方即a+b<5,可以列举出所有满足的情况(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6种结果,∴点在直线的下方的概率是636=16故选A.32.选修4-1:几何证明选讲
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
答案:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四点所在圆的半径为5233.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.34.已知随机变量X满足D(X)=2,则D(3X+2)=()
A.2
B.8
C.18
D.20答案:C35.若回归直线方程中的回归系数b=0时,则相关系数r=______.答案:由于在回归系数b的计算公式中,与相关指数的计算公式中,它们的分子相同,故为:0.36.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线37.(2x+1)5的展开式中的第3项的系数是()A.10B.40C.80D.120答案:(2x+1)5的展开式中的第3项为T3=C25(2x)3
×1=80x3,故(2x+1)5的展开式中的第3项的系数是80,故选C.38.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()
A.3
B.4
C.5
D.6答案:C39.设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.答案:证明:不妨设a≥b≥c>0,∴a2≥b2≥c2,由排序原理:顺序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.当且仅当a=b=c时,等号成立.40.已知双曲线的渐近线方程为2x±3y=0,F(0,-5)为双曲线的一个焦点,则双曲线的方程为()
A.
B.
C.
D.答案:B41.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P
F1F2的面积为()
A.
B.1
C.2
D.4答案:B42.方程x2-y2=0表示的图形是()
A.两条相交直线
B.两条平行直线
C.两条重合直线
D.一个点答案:A43.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=______.答案:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为a2+b2+c22故为:a2+b2+c2244.已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则
∠DBE=______.答案:连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故为:∠DBE=55°.45.命题“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0答案:D46.下列图形中不一定是平面图形的是()
A.三角形
B.四边相等的四边形
C.梯形
D.平行四边形答案:B47.设f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.
(2)根据(1)的结果猜测一个一般性结论,并加以证明.答案:(1)当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,(2)根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.48.在平面直角坐标系中,点A(4,-2)按向量a=(-1,3)平移,得点A′的坐标是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:设A′的坐标为(x′,y′),则x′=4-1=3y′=-2+3=1,∴A′(3,1).故选B.49.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是(
)答案:B50.在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()
A.
B.
C.
D.
答案:D第2卷一.综合题(共50题)1.点M的直角坐标是,则点M的极坐标为()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C2.A、B、C、D、E五种不同的商品要在货架上排成一排,其中A、B两种商品必须排在一起,而C、D两种商品不能排在一起,则不同的排法共有______种.答案:先把A、B进行排列,有A22种排法,再把A、B看成一个元素,和E进行排列,有A22种排法,最后再把C、D插入进去,有A23种排法,根据分步计数原理可得A22A22A23=24种排法.故为:243.四支足球队争夺冠、亚军,不同的结果有()
A.8种
B.10种
C.12种
D.16种答案:C4.已知关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,求实数k的取值范围。答案:解:令,为使方程f(x)=0的两实根一个小于1,另一个大于1,只需或,即或,解得k>0或k<-4,故k的取值范围是k>0或k<-4.5.倾斜角为60°的直线的斜率为______.答案:因为直线的倾斜角为60°,所以直线的斜率k=tan60°=3.故为:3.6.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三个向量共面,则实数λ等于
A.
B.
C.
D.答案:D7.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案
如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为
对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.8.为了了解某社区居民是否准备收看奥运会开幕式,某记者分别从社区的60~70岁,40~50岁,20~30岁的三个年龄段中的160,240,X人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()
A.90
B.120
C.180
D.200答案:D9.方程.12
41x
x21-3
9.=0的解集为______.答案:.12
41x
x21-3
9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集为{-3,2}.10.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)11.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.59B.49C.1121D.1021答案:基本事件总数为C93,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C43,后者C41C52.∴A中基本事件数为C43+C41C52.∴符合要求的概率为C34+C14C25C39=1121.12.用三段论的形式写出下列演绎推理.
(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;
(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论13.在四边形ABCD中,若=+,则()
A.ABCD为矩形
B.ABCD是菱形
C.ABCD是正方形
D.ABCD是平行四边形答案:D14.已知两点P(4,-9),Q(-2,3),则直线PQ与y轴的交点分有向线段PQ的比为______.答案:直线PQ与y轴的交点的横坐标等于0,由定比分点坐标公式可得0=4+λ(-2)1+λ,解得λ=2,故直线PQ与y轴的交点分有向线段PQ的比为
λ=2,故为:2.15.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆.16.已知二次函数f(x)=x2+bx+c,f(0)<0,则该函数零点的个数为()
A.1
B.2
C.3
D.0答案:B17.若2x1+3y1=4,2x2+3y2=4,则过点A(x1,y1),B(x2,y2)的直线方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴点A(x1,y1),B(x2,y2)在直线2x+3y=4上,又因为过两点确定一条直线,故所求直线方程为2x+3y=4故为:2x+3y=418.已知a=4,b=1,焦点在x轴上的椭圆方程是(
)
A.
B.
C.
D.答案:C19.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)•(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故选B.20.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故选B.21.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为()
A.3
B.
C.
D.
答案:D22.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率()
A.不全相等
B.均不相等
C.都相等,且为
D.都相等,且为答案:C23.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22
×3=33故为:33.24.试求288和123的最大公约数是
答案:3解析:,,,.∴和的最大公约数25.已知P(x,y)是椭圆x24+y2=1上的点,求M=x+2y的取值范围.答案:∵x24+y2=1的参数方程是x=2cosθy=sinθ(θ是参数)∴设P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7分)∴M=x+2y的取值范围是[-22,22].(10分)26.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.27.经过两点A(-3,5),B(1,1
)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1
)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.28.若P=+,Q=+(a≥0),则P,Q的大小关系是()
A.P>Q
B.P=Q
C.P<Q
D.由a的取值确定答案:C29.如图所示,圆的内接△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段BE=()
A.
B.
C.
D.4
答案:B30.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D31.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.32.引入复数后,数系的结构图为()
A.
B.
C.
D.
答案:A33.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦点在y轴上的椭圆∴2k>2故0<k<1故选D.34.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=______.答案:由已知x2+y2+2ay-6=0的半径为6+a2,由图可知6+a2-(-a-1)2=(3)2,解之得a=1.故为:1.35.已知某几何体的三视图如图,画出它的直观图,求该几何体的表面积和体积.答案:由三视图可知:该几何体是由下面长、宽、高分别为4、4、2的长方体,上面为高是2、底面是边长分别为4、4的矩形的四棱锥,而组成的几何体.它的直观图如图.∴S表面积=4×2×4+4×4+4×12×4×22=48+162.V体积=4×4×2+13×4×4×2=1283.36.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π537.从5名男学生、3名女学生中选3人参加某项知识对抗赛,要求这3人中既有男生又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种答案:由题意知本题是一个分类计数问题,要求这3人中既有男生又有女生包括两种情况,一是两女一男,二是两男一女,当包括两女一男时,有C32C51=15种结果,当包括两男一女时,有C31C52=30种结果,∴根据分类加法得到共有15+30=45故选A.38.设曲线C的方程是,将C沿x轴,y轴正向分别平移单位长度后,得到曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称.答案:(1)(2)证明略解析:(1)由已知得,,则平移公式是即代入方程得曲线C1的方程是(2)在曲线C上任取一点,设是关于点A的对称点,则有,,代入曲线C的方程,得关于的方程,即可知点在曲线C1上.反过来,同样可以证明,在曲线C1上的点关于点A的对称点在曲线C上,因此,曲线C与C1关于点A对称.39.若一元二次方程x2+(a-1)x+1-a2=0有两个正实数根,则a的取值范围是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C40.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}41.△ABC中,A(1,2),B(3,1),重心G(3,2),则C点坐标为______.答案:设点C(x,y)由重心坐标公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故点C的坐标为(5,3)故为(5,3)42.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B43.已知圆的极坐标方程是ρ=2cosθ,那么该圆的直角坐标方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A44.已知指数函数f(x)的图象过点(3,8),求f(6)的值.答案:设指数函数为:f(x)=ax,因为指数函数f(x)的图象过点(3,8),所以8=a3,∴a=2,所求指数函数为f(x)=2x;所以f(6)=26=64所以f(6)的值为64.45.已知直线l:x=2+ty=1-at(t为参数),与椭圆x2+4y2=16交于A、B两点.
(1)若A,B的中点为P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.答案:(1)直线l:x=2+ty=1-at代入椭圆方程,整理得(4a2+1)t2-4(2a-1)t-8=0设A、B对应的参数分别为t1、t2,则t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中点为P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一个三等分点,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,⇒t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t
22=-84a2+1,∴t
22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直线l的直角坐标方程y-1=4±76(x-2).46.若抛物线y2=4x上一点P到其焦点的距离为3,则点P的横坐标等于______.答案:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=3=x+p2=3,∴x=2,故为:2.47.已知命题p:∀x∈R,x2-x+1>0,则命题¬p
是______.答案:∵命题p:∀x∈R,x2-x+1>0,∴命题p的否定是“∃x∈R,x2-x+1≤0”故为:∃x∈R,x2-x+1≤0.48.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].49.若直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为边长的三角形是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不能确定答案:B50.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b,组成复数a+bi,其中虚数有()
A.36个
B.42个
C.30个
D.35个答案:A第3卷一.综合题(共50题)1.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x2.直线l1:y=ax+b,l2:y=bx+a
(a≠0,b≠0,a≠b),在同一坐标系中的图形大致是()
A.
B.
C.
D.
答案:C3.如图,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值.答案:过C作CM⊥AB,连接PM,因为PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此时PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.4.将参数方程化为普通方程为(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C5.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-26.已知两点P(4,-9),Q(-2,3),则直线PQ与y轴的交点分有向线段PQ的比为______.答案:直线PQ与y轴的交点的横坐标等于0,由定比分点坐标公式可得0=4+λ(-2)1+λ,解得λ=2,故直线PQ与y轴的交点分有向线段PQ的比为
λ=2,故为:2.7.直线kx-y+1=3k,当k变动时,所有直线都通过定点
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C8.在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若PA=a,PB=b,PC=c,则BE=______.答案:BE=12(BP+BD)=-12PB
+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+
12PC=12a-32b+12c.故为:12a-32b+12c.9.某种产品的广告费支出x与销售额y(单位:万元)之间有如下一组数据:
x24568y3040605070若y与x之间的关系符合回归直线方程y=6.5x+a,则a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y关于x的线性回归方程为y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故选A.10.5颗骰子同时掷出,共掷100次则至少一次出现全为6点的概率为(
)A.B.C.D.答案:C解析:5颗骰子同时掷出,没有全部出现6点的概率是,共掷100次至少一次出现全为6点的概率是.11.平行投影与中心投影之间的区别是
______.答案:平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点,故为:平行投影的投影线互相平行,而中心投影的投影线交于一点12.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:813.下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一个函数与函数y=x
(x≥0)有相同图象时,这两个函数应是同一个函数.A中的函数和函数y=x
(x≥0)的值域不同,故不是同一个函数.B中的函数和函数y=x
(x≥0)具有相同的定义域、值域、对应关系,故是同一个函数.C中的函数和函数y=x
(x≥0)的值域不同,故不是同一个函数.D中的函数和函数y=x
(x≥0)的定义域不同,故不是同一个函数.综上,只有B中的函数和函数y=x
(x≥0)是同一个函数,具有相同的图象,故选B.14.命题:“如果ab=0,那么a、b中至少有一个等于0.”的逆否命题为______
______.答案:∵ab=0的否命题是ab≠0,a、b中至少有一个为零的否命题是a≠0,且b≠0,∴命题“若ab=0,则a、b中至少有一个为零”的逆否命题是“若a≠0,且b≠0,则ab≠0.”故:如果a、b都不为等于0.那么ab≠015.请输入一个奇数n的BASIC语句为______.答案:INPUT表示输入语句,输入一个奇数n的BASIC语句为:INPUT“输入一个奇数n”;n.故为:INPUT“输入一个奇数n”;n.16.若向量、、满足++=,=3,=1,=4,则等于(
)
A.-11
B.-12
C.-13
D.-14答案:C17.棱长为2的正方体ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D18.过点P(3,0)作一直线,它夹在两条直线l1:2x-y-3=0,l2:x+y+3=0之间的线段恰被点P平分,该直线的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C19.已知单位向量a,b的夹角为,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B20.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.21.不等式|x-500|≤5的解集是______.答案:因为不等式|x-500|≤5,由绝对值不等式的几何意义可知:{x|495≤x≤505}.故为:{x|495≤x≤505}.22.长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为______.答案:设长方体过同一顶点的三条棱长分别为a,b,c,∵从长方体一个顶点出发的三个面的面积分别为3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即长方体的体积为15,故为:15.23.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.24.若直线l与直线2x+5y-1=0垂直,则直线l的方向向量为______.答案:直线l与直线2x+5y-1=0垂直,所以直线l:5x-2y+k=0,所以直线l的方向向量为:(2,5).故为:(2,5)25.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23.
(1)求比赛三局甲获胜的概率;
(2)求甲获胜的概率;
(3)设甲比赛的次数为X,求X的数学期望.答案:记甲n局获胜的概率为Pn,n=3,4,5,(1)比赛三局甲获胜的概率是:P3=C33(23)3=827;(2)比赛四局甲获胜的概率是:P4=C23(23)3
(13)=827;比赛五局甲获胜的概率是:P5=C24(13)2(23)3=1681;甲获胜的概率是:P3+P4+P5=6481.(3)记乙n局获胜的概率为Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比赛次数的分布列为:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比赛次数的数学期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.26.下列图形中不一定是平面图形的是()
A.三角形
B.四边相等的四边形
C.梯形
D.平行四边形答案:B27.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求
(1)a•(b+c);
(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a•(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).28.在△ABC中,已知A(2,3),B(8,-4),点G(2,-1)在中线AD上,且|AG|=2|GD|,则C的坐标为______.答案:设C(x,y),则D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故为:(-4,-2).29.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若OP=ae1+be2(a、b∈R),则a、b满足的一个等式是______.答案:因为e1=(2,1)、e2=(2,-1)是渐进线方向向量,所以双曲线渐近线方程为y=±12x,又c=5,∴a=2,b=1双曲线方程为x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化简得4ab=1.故为4ab=1.30.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()
A.
B.
C.
D.答案:B31.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是()
A.假设至少有一个钝角
B.假设没有一个钝角
C.假设至少有两个钝角
D.假设没有一个钝角或至少有两个钝角答案:C32.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上收据可以估计该池塘有______条鱼.答案:设该池塘中有x条鱼,由题设条件建立方程:30x=250,解得x=750.故为:750.33.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1则y=2×2+1=5,那么集合A中元素2在B中的象是5故选B.34.已知复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m=______.答案:当m2-5m+6=0m2-3m≠0时,即m=2或m=3m≠0且m≠3⇒m=2时复数z为纯虚数.故为:2.35.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同范本 博客
- 2024年度国际货物买卖信用证合同
- 《LNDX装饰工程公司物资采购风险管理研究》
- 2024版led显示屏控制系统设计与开发合同
- 二零二四年度人工智能助手研发与授权合同
- 二零二四年度影视制作合同.电视剧集制作发行合作
- 2024年度高层建筑窗帘供应与安装合同
- 2023年天水市农业龙头企业融资担保有限责任公司招聘笔试真题
- 餐厅终止合同范本
- 交运股份合同范本
- 合同到期欠款补充协议
- 泌尿系统结石的治疗
- 2024年学生公寓住宿协议
- 2024交通安全知识培训
- 淮阴工学院《产品形态设计》2021-2022学年第一学期期末试卷
- 2024年长沙市事业单位招聘计算机岗位专业知识试题
- 2024年中国家用燃气采暖炉市场调查研究报告
- 2024年中国心力衰竭诊断和治疗指南2024版
- 四年级数学上册 第五、六单元过关检测卷(苏教版)
- 2024陕西延长石油集团炼化公司操作工校园招聘170人高频难、易错点500题模拟试题附带答案详解
- 期末模拟练习(试题)-2024-2025学年苏教版二年级上册数学
评论
0/150
提交评论