




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OverviewOverviewPart1:ReviewofObjectTracking•SingleObjectTracking(SOT)•VideoObjectSegmentation(VOS)•MultipleObjectTracking(MOT)•Multi-ObjectTrackingandSegmentation(MOTS)•SummaryPart2:TowardsGrandUnificationofObjectTracking•GeneralVisionModels(GVM)•UnificationofObjectTracking•Unicorn•Experiments•FurtherAnalysis PartPart1:ReviewofObjectTracking•SingleObjectTracking(SOT)•VideoObjectSegmentation(VOS)•MultipleObjectTracking(MOT)•Multi-ObjectTrackingandSegmentation(MOTS) SingleSingleObjectTracking(SOT)TrackanarbitraryobjectinavideogivenitsinitiallocationSingle-object,Any-classOcclusion,LightChange,BackgroundClutter,etc. zCorrHead !Online !Head !TransformerzHeadxfffSingleObjectTrackingzCorrHead !Online !Head !TransformerzHeadxfffSingleObjectTracking(SOT)SiameseRPNf !fx•SiamRPN(CVPR18)•DaSiamRPN(ECCV18)•SiameRPN++(CVPR19)•Ocean(ECCV20)zDCFx•ATOM(CVPR19)•DiMP(ICCV19)•PrDiMP(CVPR20)•KYS(ECCV20)f !fTransf !f•TransT(CVPR21)•STARK(ICCV21)MostSOTmethodsarebasedonthesearchregion.Pros:Cons:•SavingcomputationV.S•Sensitivetotemporarytrackingfailure•Filteringoutdistractors•Time-consumingwhennumofobjectsislarge UnsupervisedVOSReferringUnsupervisedVOSReferringVOSVideoObjectSegmentation(VOS)nGoalnSegmentspecificobjectspreciselyinavideo.SegmentsalientmovingobjectSemi-supervisedVOSSegmentobjectsgiveninthe1stframebymasksSegmentobjectsgiveninthe1stframebylanguageSTM(ICCVSTM(ICCV19)CFBI(ECCV20)STCN(NeurIPS21)VideoObjectSegmentation(VOS)Semi-supervisedVOSisdominatedbySpace-TimeMemoryNetworkAlthoughachievinggreatperformance,STM-basedmethodssufferfromthefollowingdisadvantages:•Hugetimeandspacecomplexity,especiallyforhighspatialresolutionandthelongsequence.•Highlyrelyingonhigh-qualitymaskannotationsonthefirstframe.MultipleObjectMultipleObjectTracking(MOT)nGoalnTrackallobjectsofspecificclassesinavideo.MOTChallengeBDD100KVisdrone(1class:Person)(8classes:Car,pedestrian,etc)(10classes:Car,pedestrian,etc)ParadigmParadigmMultipleObjectTracking(MOT)RepresentativeMethodsuTrackingbyDetectionuTrackingbyDetection(SORT,DeepSORT,StrongSORT)uJointDetectionandTrackinguJointDetectionandTracking(JDE,FairMOT,CenterTrack,QDTrack)(TrackFormer,GTR)MOTmethodstakesthehigh-resolutionwholeimageastheinputtodetectobjectsascompletelyaspossible.Multi-ObjectTrackingandSegmentation(MOTS)nGoalnSegmentallobjectsofspecificclassesinavideo.MOTSChallengeBDD100KMOTS(1class:Person)(8classes:Car,pedestrian,etc)MOTScanbeseenasavariantofMOTbyreplacingboxeswithmasks.SummarSummaryReferenceOutputsClassTrackspervideoRepresentativeMethodsTypicalInputsSOTInitialboxBoxesagnosticOneOne-ShotDetectionSmallsearchregionVOSInitialmaskMasksagnosticSeveralSTMMedium-resolutionWholeImageMOTNOBoxesspecificTensorhundredsDetection+AssociationHigh-resolutionWholeImageMOTSNOMasksspecificTensorhundredsDetection+AssociationHigh-resolutionWholeImagettherearelargegapsbetweenthefourtrackingtasks•GeneralVisionModels(GVM)•UnificationofObjectTracking•Unicorn•Experiments•FurtherAnalysis entAIvsAGI–CurrentweakAIisdesignedforsolvingonespecifictask.–Artificialgeneralintelligence(AGI)isexpectedtounderstandorlearnanyintellectualtaskthatahumanbeingcan. •Pioneeringworksinthepastyear2021.082021.112021.112022.01ies Threeobstacleshinderingtheunification:(1)Thecharacteristicsoftrackedobjectsvary(onetargetofanyclassgiveninthereferenceframev.stensevenhundredsofinstancesofspecificcategories)(2)SOTandMOTrequiredifferenttypesofcorrespondence.(pixel-levelcorrespondencedistinguishingthetargetfromthebackgroundv.sinstance-levelcorrespondencematchingthecurrentlydetectedobjectswithprevioustrajectories)(3)DifferentInputs.(smallsearchregiontosavecomputationandfilterpotentialdistractorsv.shigh-resolutionfullimagefordetectinginstancesascompleteaspossible) •WeproposeUnicorn,aunifiedsolutionforSOT,MOT,VOSandMOTS.•Unicornaccomplishesthegreatunificationofthenetworkarchitectureandthelearningparadigmforfourtrackingtasks.•Unicornputsforwardsnewstate-of-the-artperformanceonmultiplechallengingtrackingbenchmarkswiththesamemodelparameters. Unifiedinputsandbackbone•Takingthefullimagesasinputsforalltasks.•Referenceframeisthe1stframeforSOT&VOSandthe(t-1)thframeforMOT&MOTS•Oneunifiedbackbone(ConvNeXtbydefault)ErefeRhwxcEcureRhwxcCpixeRhwxhwForMOT&MOTS,TheinstanceembeddingeisextractedfromtheframeembeddingE,wherethecenteroftheinstanceislocatederefeRMxc,ecureRNxcCinsteRNxMCinstisthesub-matrixofCpixLearninghighlydiscriminativeembedding{Eref,Ecur}isthekeytobuildingprecisecorrespondenceforalltrackingtasks.Aninteractionmoduleisusedtoenhancedtheoriginalimagefeature.Bydefaultweusethedeformableattentionblockforinteraction.LearningCorrespondencebyPropagation&LearningCorrespondencebyPropagation&Association.•ForSOT&VOS,Correspondencehelpstopropagatethetargetmapfromthereferenceframetothecurrentframe.•ForMOT&MOTS,Correspondencehelpstomatchthedetectionsonthecurrentframewiththetrajectoriesonthereferenceframe.Weintroducethetargetpriorastheswitchamongfourtrackingtasks.•ForSOT&VOS,thetargetpriorcanenhancetheoriginalFPNfeatureandmakesthenetworkfocusonthetrackedtarget.•ForMOT&MOTS,thefusedfeatureF′degeneratesbacktotheoriginalFPNfeatureFtodetectobjectsofspecificclasses.ObjectObjectdetectionheadbasedonYOLOXandCondInst•One-stage,anchor-free•NoRoIoperationssuchasRoI-AlignYOLOXHeadforobjectdetectionCondInstHeadforinstancesegmentationAddthemaskbranchandfreezeotherparametersStage1Target:Correspondence+DetectionLoss:Lstage1=Lcorr+LdetData:1:1fromSOT&MOTSOT:weuseCOCO,LaSOT,GOT-10KandTrackingNetMOT:•ForMOT17,weuseCrowdhuman,ETHZ,CityPerson,MOT17•ForBDD100K,weuseBDD100KStage2Target:MaskLoss:Lstage2=LmaskData:1:1fromVOS&MOTSVOS:weuseCOCO,DAVIS,Youtube-VOSMOTS:•ForMOTS,weuseCOCOandMOTS•ForBDD100K,weuseBDD100K•TrainingofVOS&MOTSwouldnotimpacttheperformanceofSOT&MOT.ForuserswhoareonlyinterestedintheSOT&MOT,runningStage1isenough.•Ineachstage,wetrainthemodel
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 近视防控健康课件
- 自贡市第一人民医院招聘真题2024
- 宁波象山县卫生健康系统招聘真题2024
- 年终总结:机械行业个人发展回顾与展望
- 河北保定高阳县医院高阳县中医医院招聘真题2024
- 2024年河南郑州西区中医院招聘考试真题
- 亳州蒙城县城区初中联盟校选调教师真题2024
- 我离规范有多远
- 税收垫风险防控培训课件
- 护理带班组长竞聘
- (站表2-1)施工单位工程项目主要管理人员备案表
- 中班美术《我心中的太阳》绘画课件幼儿园优质课公开课
- 应急管理工作检查记录表
- 《雷锋叔叔你在哪里》教学案例
- DB32-T 2798-2015高性能沥青路面施工技术规范-(高清现行)
- 《机械设计基础》课程思政教学案例(一等奖)
- 译林版五年级英语下册 Unit 6 第4课时 教学课件PPT小学公开课
- API-620 大型焊接低压储罐设计与建造
- 年产300吨莲子蛋白粉工厂的设计
- 箱变施工安全文明保证措施
- 浙江省杭州市介绍(课堂PPT)
评论
0/150
提交评论