版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
QC七大手法品保部2015-04-25目录前言PDCA简介QC应用手法概述QC七大手法其他手法
工作及生活中难免碰到问题,一旦发生问题如不立即解决,小问题也可能变成大问题。然而,解决问题是要用方法的,否则必将杂乱无章,思路混乱。而QC手法就是能协助我们迅速且正确解决问题的利器之一。
前言
一般问题解决,一般都是按照PDCA的原理来解决的。每一阶段都有不同的QC手法可供搭配使用。如果能够充分了解质量工具且运用得宜,就能搜集到正确有效的信息,并作出精准的判断。
PDCA和QC手法的关系PLAN1排列图法,直方图法,控制图法,工序能力分析,KJ法,矩阵图法2因果分析图法,关联图法,矩阵数据分析法,散布图法3排列图法,散布图法,关联图法,系统图法,矩阵图法,KJ法,实验设计法4目标管理法,关联图法,系统图法,矢线图法,过程决策程序图法DO5系统图法,矢线图法,矩阵图法,过程决策程序图法
CHECK6排列图法,控制图法,系统图法,过程决策程序图法,
检查表,抽样检验ACT7标准化,制度化,KJ法8在下一个改进机会中重新使用PDCA循环PDCA简介遗留问题纳入下期总结经验纳入基准发现问题分析原因找出原因制定措施执行措施检查效果PDCA的四个阶段八个步骤PDCA的职责分布7效果维持8反省及今后计划6效果确认3方策拟定2课题明确化与目标设定1主题选定4最终方案确定5最终方案确定P管理人员D作业人员A管理人员C检验人员1、表示事物特征在质量管理活动中收集到的数据大都表现为杂乱无章的,这就需要运用统计方法计算其特征值,以显示出事物的规律性。如平均值、中位数、标准偏差、方差、极差(全距)等。
QC手法应用概述2、比较两事物的差异在质量管理活动中,实施质量改进或应用新材料、新工艺,均需要判断所取得的结果同改进前的状态有无显著差异,这就需要用到假设检验、显著性检验、方差分析和水平对比法等。
3、分析影响事物变化的因素为了对症下药,有效地解决质量问题,在质量管理活动中可以应用各种方法,分析影响事物变化的各种原因。如因果图、调查表、散布图、排列图、分层法、树图、方差分析等等。
4、分析事物之间的相互关系在质量管理活动中,常常遇到两个甚至两个以上的变量之间虽然没有确定的函数关系,但往往存在着一定的相关关系。运用统计方法确定这种关系的性质和程度,对于质量活动的有效性就显得十分重要。这里就可利用散布图、实验设计法、排列图、树图、头脑风暴法等。
5、研究取样和试验方法,确定合理的试验方案用于这方面和统计技术有:抽样方法、抽样检验、实验设计、可靠性试验等。6、发现质量问题,分析和掌握质量数据的分布状况和动态变化用于这方面的统计技术有:频数直方图、控制图、散布图、排列图等。
7、描述质量形成过程用于这方面的统计技术有流程图、控制图等。
QC七大手法调查表法分层法排列图法
因果图法
散布图法
直方图法
控制图法关联图法
亲和图法
过程决策程序图法
系统图法
矩阵数据分析法
矩阵图法
箭条图法旧新用途调查表:收集数据分层法:数据项目的设立排列图:看问题的分布情况,找出主要因素。因果图:理清思路,寻找原因。散布图:两个因素之间的关系。直方图:看问题的分别情况,发现异常情况存在。控制图:稳定与否。口決查检集数据收集、整理资料层别作解析从不同角度层面发现问题排列抓重点确定主导因素鱼骨追原因寻找引发结果的原因散布看相关展示变量之间的线性关系直方显分布展示过程的分布情况管制找异常识别波动的来源调查表是为了调查客观事物、产品和工作质量,或为了分层收集数据而设计的图表。即把产品可能出现的情况及分类预先列成调查表,则检查产品时只需在相应分类中进行统计。调查表1、不良项目调查表质量管理中“良”与“不良”,是相对于标准、规格、公差而言的。一个零件和产品不符合标准、规格、公差的质量项目叫不良项目,也称不合格项目。缺陷调查表如1-1表。表1-1不良品项目调查表2、缺陷位置调查表
大多是画成产品外形图、展开图,然后在其上对缺陷位置的分布进行调查。缺陷位置调查表宜与措施相联系,能充分反映缺陷发生的位置,便于研究缺陷为什么集中在那里,有助于进一步观察、探讨发生的原因。
除产品外形图,用语言或文字描述缺陷发生的频数也是可以的,如表1-2所示。
3、频数调查表为了做直方图而需经过收集数据、分组、统计频数、计算、绘图等步骤。如果运用频数调查表,那就在收集数据的同时,直接进行分解和统计频数。每得到一个数据,就在频数调查表上相应的组内作一个符号,测量和收集数据完毕,频数分布表也随之作出,便能迅速的得到直方图的草图。目前,调查表广泛应用于各行各业,调查表的形式也多种多样。
为了能够获得良好的效果、可比性、全面性和准确性,调查表格设计应:简单明了,突出重点;应填写方便,符号好记;调查、加工和检查的程序与调查表填写次序应基本一致;填写好的调查表要定时、准时更换并保存;数据要便于加工整理,分析整理后及时反馈。
分层就是把所收集的数据进行合理的分类,把性质相同、在同一生产条件下收集的数据归在一起,把划分的组叫做“层”,通过数据分层把错综复杂的影响质量因素分析清楚。通常,我们将分层与其他质量管理中统计方法一起联用,即将性质相同、在同一生产条件下得到的数据归在一起,然后再分别用其他方法制成分层排列图、分层直方图、分层散布图等。
【例1-1】在柴油机装配中经常发生气缸垫漏气现象,为解决这一质量问题,对该工序进行现场统计。(1)收集数据:n=50,漏气数f=19,漏气率p=f/n=19/50=38%
(2)分析原因分层法通过分析,认为造成漏气有两个原因:①该工序涂密封剂的工人A、B、C三人的操作方法有差异;②气缸垫分别由甲、乙两厂供给,原材料有差异。因此采用分层法列成表1-3、表1-4进行分析。
由表1-3和表1-4,人们似乎以为,降低气缸漏气率的办法可采用乙厂提供的气缸垫和工人B的操作方法。但实践结果表明,这样做漏气率非但没有降低,反而增加到来43%,这是什么原因呢?这是由于仅单纯地分别考虑操作者和原材料造成漏气的情况,没有进一步考虑不同工人用不同工厂提供的气缸垫也会造成漏气。为此,需要进行更细致的综合分析,如表1-5。
由表1-5再次提出降低气缸漏气率的措施是:①使用甲厂提供的气缸垫时,要采用工人B的操作方法。②使用乙厂提供的气缸垫时,要采用工人A的操作方法。实践表明,上述的分层法及采用的措施十分有效,漏气率大大降低。排列图是通过找出影响产品质量的主要问题,以便确定质量改进关键项目的图表。排列图最早由意大利经济学家帕雷多(Pareto)用于统计社会财富分布状况的。后来,美国质量学家朱兰把这个原理应用到质量管理中来,成为解决产品质量的主要问题的一种图形化的有效方法。排列图的形式,一般如图1-13所示。排列图法1、排列图的作图步骤(1)一般指不合格项目、废品件数、消耗工时等等。(2)收集与整理数据可按废品项目、缺陷项目,不同操作者等进行分类。列表汇总每个项目发生的数量即频数fi,按大小进行排列。(3)计算频数fi
、频率Pi%、累计频率Fi等。图1-13排列图的形式
(4)画图排列图由于两个纵坐标,一个横坐标,几个顺序排列的矩形和一条累计频率折线组成。左边的纵坐标表示频数fi
,右边的纵坐标表示频率Pi
;横坐标表示质量项目,按其频数大小从左向右排列;各矩形的底边相等,其高度表示对应项目的频数;对应于右边纵坐标频率Pi
,应在各矩形的右边或右边的延长线上打点,各点的纵坐标值表示对应项目的累计频率;以原点为起点,依次连接上述各点,所得折线即为累计频率折线。
(5)根据排列图,确定主要因素、有影响因素和次要因素。主要因素——累计频率Fi在0%~80%左右的若干因素。它们是影响产品质量的关键原因,又称为A类因素。其个数为1~2个,最多3个。有影响因素——累计频率Fi在80%~95%左右的若干因素。它们对产品质量有一定的影响,又称为B类因素。次要因素——累计频率Fi
在95%~100%左右的若干因素。它们对产品质量仅有轻微影响,又称为C类因素。【例1-3】某化工厂对十五台尿素塔焊缝缺陷所需工时进行统计分析,如表1-9。
表1-9焊缝缺陷所需工时进行统计分析表
按排列图作图步骤,确定焊缝气孔和夹渣为主要因素;焊缝成型差和焊道凹陷为有影响因素。所作排列图如图1-14。图1-14焊缝缺陷排列图
2、排列图的用途(1)找出主要因素排列图把影响产品质量的“关键的少数与次要的多数”直观地表现出来,使我们明确应该从哪里着手来提高产品质量。实践证明,集中精力将主要因素的影响减半比消灭次要因素收效显著,而且容易得多。所以应当选取排列图前1~2项主要因素作为质量改进的目标。如果前1~2项难度较大,而第3项简易可行,马上可见效果,也可先对第3项进行改进。
(2)解决工作质量问题也可用排列图不仅产品质量,其他工作如节约能源、减少消耗、安全生产等都可用排列图改进工作,提高工作质量。检查质量改进措施的效果。采取质量改进措施后,为了检验其效果,可用排列图来核查。如果确有效果,则改进后的排列图中,横坐标上因素排列顺序或频数矩形高度应有变化。
因果图是表示质量特性与原因的关系的图。主要用于寻找质量问题产生的原因,既分析原因与结果之间的关系。对于主要质量问题可以采取排列图法获得,然后根据分析问题的原因,采取适当的措施加以解决。在生产过程中,引起质量波动主要与人员、机器、材料、工艺方法和环境等因素有关,而一个问题的发生往往有多种因素交织在一起,从表面上难以迅速找出其中主要的因素。我们可以运用收集信息的各种方法将影响质量的各种因素反映在一张图上,比较原因大小和主次,从而迅速找出产生问题的主要原因;也就是根据反映出来的主要问题(最终结果),找出影响它的大原因、中原因、小原因、更小原因等等。探讨质量原因,要从大到小,从粗到细,寻根究底,然后采取措施。因果图就是通过层层深入的分析研究来找出影响质量原因的简便而有效的方法,从交错混杂的大量影响因素中理出头绪,逐步地把影响质量主要、关键、具体原因找出来,从而明确所采取的措施。因果图法
把所有能想到的原因,按它们之间的相依隶属关系,用箭头归纳联系在一起(箭干写原因,箭头指向结果),绘成一张树枝状或鱼刺状的因果图。质量因果图由质量问题和影响因素两部分组成,如图1-15。主干箭头所指的为质量问题,主干上的大枝表示大原因,中枝、小枝芽表示原因的依此展开。图1-15因果图示意图1、因果图作图步骤(1)确定要研究分析的质量问题和对象,既确定要解决的质量特性是什么。将分析对象用肯定语气(不标问号)写在图的右边,最好定量表示,以便判断采取措施后的效果。画出主干,箭头指向右端的结果——研究的对象。(2)确定造成这个结果和质量问题的因素分类项目。影响工序质量的因素分为人员、设备、材料、工艺方法、环境等;再依次细分,画大枝,箭头指向主干,箭尾端记上分类项目,并用方框框上。
(3)把到会者发言、讨论、分析的意见归纳起来,按相互的相依隶属关系,由大到小,从粗到细,逐步深入,直到能够采取解决问题的措施为止。将上述项目分别展开;中枝表示对应的项目中造成质量问题的一个或几个原因;一个原因画一个箭头,使它平行于主干而指向大枝;把讨论、意见归纳为短语,应言简意准,记在箭干的上面或下面,再展开,画小枝,小枝是造成中枝的原因。如此展开下去,越具体越细致,就越好。(4)确定因果图中的主要、关键原因,再去现场调查研究,验证所确定的主要、关键原因是否找对、找准。以此作为制订质量改进措施的重点项目。一般情况下,主要、关键原因不应超过所提出的原因总数的三分之一。(5)注明因果图的名称、日期、参加的人员、绘制人和参考查询事项。2、作因果图的注意事项(1)要充分发扬民主,把各种意见都记录、整理入图。一定要请当事人、知情人到会并发言,介绍情况,发表意见。(2)主要、关键原因越具体,改进措施的针对性就越强。主要、关键原因初步确定后,应到现场去落实、验证主要原因,在订出切实可行的措施去解决。(3)不要过分的追究个人责任,而要注意从组织上、管理上找原因。实事求是的提供质量数据和信息,不互相推托责任。
(4)尽可能用数据反映、说明问题。(5)作完因果图后,应检查下列几项:图名、应标明主要原因是哪些等、文字是否简便通俗、编译是否明确、定性是否准确、应尽可能地定量化、改进措施不宜画在图上。(6)有必要时,可再画出措施表。为分析图1-14上第一位主要因素“焊缝气孔缺陷”原因,作因果图,见图1-16。图1-16因果图散布图是通过分析研究两种因素的数据之间的关系,来控制影响产品质量的相关因素的一种有效方法。在生产实际中,往往有些变量之间存在着相关关系,但又不能由一个变量的数值精确地求出另一个变量的数值。如棉纱的水分含量与伸长度之间的关系;喷漆时的室温与漆料粘度的关系;零件加工时切削用量与加工质量的关系;热处理时钢的淬火温度与硬度的关系(如图1-9)等等。从图1-9可见,数据的点子近似于一条直线,在这种情况下可以说硬度与淬火温度近似线性关系。散布图法图1-9钢的淬火温度与硬度分布图1、散布图的观察分析根据测量的两种数据做出散布图后,观察其分布的形状和密疏程度,来判断它们关系密切程度。散布图的五种情形如图1-10。图1-10散布图的五种情形
从图1-10中,我们可以看出散布图大致可分为下列五种情形:(1)完全正相关:x增大,y也随之增大。x与y之间可用直线y=a+bx(b为正数)表示。(2)正相关:x增大,y基本上随之增大。此时除了因素x外,可能还有其他因素影响。(3)负相关:x增大,y基本上随之减小。同样,此时可能还有其他因素影响。(4)完全负相关:x增大,y随之减小。x与y之间可用直线y=a+bx(b为负数)表示。(5)无关:即x变化不影响y的变化。
制作与观察散布图时,应注意以下几种情况:①应观察是否有异常点或离群点出现,即有个别点子脱离总体点子较远。如果有不正常点子应剔除;如果是原因不明的点子,就慎重处理,以防还有其他因素影响。②散布图如果处理不当也会造成假象。如图1-11。由图可见,若将x的范围只局限在中间的那一段,则在此范围内看,y与x似乎并不相关,但从整体看,x与y关系还比较密切。③散布图有时要分层处理。如图1-12,x与y的相关关系似乎很密切,但若仔细分析一下数据,这些数据原是来自三种不同的条件。如果这些点子分成三个不同层次A、B、C。从每个层次中考虑,x与y实际上并不相关。图1-11局部与整体的散布图图1-12应分层处理的散布图
2、散布图与相关系数r
为了表达两个变量之间相关关系的密切程度,需要用一个数量指标来表示,这个指标称为相关系数,通常用r表示。不同的散布图有不同的相关系数,r满足:-1≤r≤1。因此,可根据相关系数r值来判断散布图中两个变量之间的关系。见表1-8。表1-8相关系数r的取值说明
相关系数的计算公式是
式中,表示n个x数据的平均值;表示n个y数据的平均值;Lxx表示x的的离差平方之和,即Σ(x-)2;Lyy表示y的离差平方之和,即(y-)2
;Lxy表示x的离差与y的离差的乘积之和,即
Σ(x-)2(y-)2
。(1-10)xyxyxy
应注意:相关系数r所表示的两个变量之间的相关是指线性相关。因此,当r的绝对值很小甚至等于0时,并不表示x与y之间就一定不存在任何关系。如x与y之间有关系的,但经过计算相关系数的结果却为0,这是因为此时x与y的关系是曲线关系,而不是线性关系造成的。直方图法是适用于对大量计量什数据进行整理加工,找出其统计规律,即分析数据分布的形态,以便对其总体的分布特征进行推断,对工序或批量产品的质量水平及其均匀程度进行分析的方法。1、作直方图的方法步骤如下(1)收集数据一般收集数据都要随机抽取50个以上质量特性数据,并按先后顺序排列。表1-6是收集到的某产品数据,其样本大小用n=100表示。直方图法
(2)找出数据中的最大值,最小值和极差数据中的最大值用xmax表示,最小值用xmin
表示,极差用R表示。
【例1-2】某项目统计数据为:xmax=63,xmin=38,极差R=xmax-xmin=
63-38=25。区间[xmax,xmin]称为数据的散布范围,全体数据在此范围内变动。(3)确定组数组数常用符号k表示。k与数据数多少有关。数据多,多分组;数据少,少分组。组数选用表
(4)求出组距(h)组距即组与组之间的间隔,等于极差除以组数,即组距h===278≈3
(5)确定组界为了确定边界,通常从最小值开始。先把最小值放在第一组的中间位置上。本例中数据最小值xmin=38,组距(h)=3,故第一组的组界为:
Xmax-
Xmink63-389Xmix
-~xmin
+h2h2
(6)计算各组的组中值(wi)所谓组中值,就是处于各组中心位置的数值,又叫中心值。某组的中心值(wi
)=(某组的上限+某组的下限)/2
第一组的中心值(w1
)=(365+395)/2=38
第二组的中心值(w2
)=(395+4252)/2=41
其他各组类推,组中值如表1-7中所示。(7)统计各组频数统计频数的方法,如表1-7所示。表1-7频数统计表
(8)画直方图以分组号为横坐标,以频数为高度作纵坐标,作成直方图,如图1-2所示。2015105频数22161823171534123456789组号图1-2直方图2、直方图的用途直方图是经常使用的且能发挥很大作用的统计方法。其主要作用是:(1)观察与判断产品质量特性分布状况。(2)判断工序是否稳定。(3)计算工序能力,估算并了解工序能力对产品质量保证情况。3、直方图的观察与分析观察主要有两个方面:一是分析直方图的全图形状,能够发现生产过程的一些质量问题;二是把直方图和质量指标比较,观察质量是否满足要求。如果我们把直方图分为正常和非正常型的话,它们的形状如图1-3。
(a)正常型(b)偏向型(左)(c)偏向型(右)(d)双峰型(f)平顶型(e)锯齿型(e)锯齿型(g)孤岛型图1-3直方图的形状
(1)正常型[图1-3(a)]
图形中央有一顶峰,左右大致对称,这时工序处于稳定状态。其他都属非正常型。(2)非正常型[图1-3(b),(c)]
图形有偏左、偏右两种情形,原因是:①一些形位公差要求的特性值是偏向分布。②加工者担心出现不合格品,在加工孔时往往偏小,加工轴时往往偏大造成。(3)双峰型[图1-3(d)]
图形出现两个顶峰极可能是由于把不同加工者或不同材料、不同加工方法、不同设备生产的两批产品混在一起形成的。
(4)锯齿型[图1-3(e)]
图形呈锯齿状参差不齐,多半是由于分组不当或检测数据不准而造成。(5)平顶型[图1-3(f)]
无突出顶峰,通常由于生产过程中缓慢变化因素影响(如刀具磨损)造成。(6)孤岛型[图1-3(g)]
由于测量有误或生产中出现异常(原材料变化、刀具严重磨损等)。4、直方图与标准界限比较统计分布符合标准的直方图有以下几种情况:(1)理想直方图:散布范围B在标准界限T=[Tl,Tu]内,两过有余量,如图1-4。(2)B位于T内,一边有余量,一边重合,分布中心偏移标准中心,应采取措施使分布中心与标准中心接近或重合,否则一侧无余量易出现不合格品,如图1-5(a)和(b)。图1-4图1-5
(3)B与T完全一致,两过无余量,易出现不合格品。如图1-6。统计分布不符合标准的直方图有以下几种情况:①分布中心偏移标准中心,一侧超出标准界限,出现不合格品,如图1-7。②散布范围B大于T,两侧超出标准界限,均出现不合格品,如图1-8。尽管直方图能够很好地反映出产品质量的分布特征,但由于统计数据是样本的频数分布,它不能反映产品随时间的过程特性变化,有时生产过程已有趋向性变化,而直方图却属于正常型,这也是直方图的局限性。图1-6图1-7图1-8控制图是判断和预报生产过程中质量状况是否发生波动的一种有效方法。现有控制作为质量控制的有力武器已广泛应用于各行各业。例如美国某电气公司的一个工厂有3000人,制定了5000张控制图;美国柯达彩卷公司有5000人,制定控制图有35000张,平均每人7张。我国航空飞机制造厂中的先进质量体系(AQS)中,要求一些工序必须作控制图。控制图法1、控制图的基本格式控制图的基本格式如图1-17。它一般有三条线。中心线CL(centralline)——用细实线表示;上控制界限UCL(uppercontrollimit)——用虚线表示;下控制界限LCL(lowercontrollimit)——用虚线表示。图1-17控制图的基本格式UCL和LCL之间的面积为数据在正态分布的9973%,
而不是公差。
所谓控制图的基本思想就是把要控制的质量特性值用点子描在图上,若点子全部落在上、下控制界限内,且没有什么异常状况时,就可判断生产过程是处于控制状态。否则,就应根据异常情况查明并设法排除。通常,点子越过控制线就是报警的一种方式,如图1-17中的第六点。控制图作为一种管理图,在工业生产中,根据所要控制的质量指标的情况和数据性质分别加以选择。如表1-10。表1-10各种控制图计算公式一览表2、常用控制图的种类常用质量控制图可分为两大类。(1)计量值控制图包括:单值控制图、单值-移动极差控制图、平均值-极差控制图、中位数控制图。(2)计数值控制图包括:不良品数控制图、不良品率控制图、缺陷数控制图、单位缺陷数控制图。根据所要控制的质量特性和数据的种类、条件等,按图1-18中的箭头方向便可作出正确的选用。图1-18控制图的种类及选用流程
计量值控制图一般适用于以计量值为控制对象的场合。所谓计量值表现为数轴上的所有点,是连续的数值。比如,长度、强度等,只要测量精度能够达到,那么其特征值可以任意的精度表示。计量值控制图对工序中存在的系统性原因反应敏感,所以具有及时查明并消除异常的明显作用,其效果比计数值控制图显著。计量值控制图经常用来预防、分析和控制工序加工质量,特别是几种控制图的联合使用。计数值控制图则用于以计数值为控制对象的场合。所谓计数值表现为数轴上的整数形式,是离散型的数值。比如,一个产品批的不合格品件数。计数值控制图的作用与计量值控制图类似,其目的也是为了分析和控制生产工序的稳定性,预防不合格品的发生,保证产品质量。3、控制界限的原理控制图中的上、下控制界限,一般是用“三倍标准偏差法”(又称3σ法)。而把中心线确定在被控制对象(如平均值、极差、中位数等)的平均值上。再以中心线为基准向上或向下量3倍标准偏差,就确定了上、下控制界限。另外,在求各种控制图时,3倍标准偏差并不容易求到,故按统计理论计算出一些近似系数用于各种控制图的计算信息输入表1-11。例如,要求平均值控制图,则平均值的x中心线值为x,上下控制界限值为:
UCL=μ+3σ=x+A2RLCL=μ-3σ=x-A2R===
由于实际工作中正态分布经常出现,即不论μ和σ是什么数值,产品质量计量值在μ+3σ与μ-3σ上下界限之间出现的可能性大小(即概率)为9973%,如图1-19所示。这样,根据正态分布的特点,在只有偶然性因素的生产过程中,1000个数据中最多有3个数据(点子)可能超出控制界限。一旦发现某点子在界外,就可判断生产过程发生了异常,需立即查明。这种判断的错判率只是千分之三。图1-19正态分布在μ±3σ间的概率表1-11计量值控制图计算公式中的系数值表【例1-4】某厂生产φ10±020mm的圆柱销,每隔一定时间随机抽取5个样品,共取20组,所得数据如表1-12。
表1-12x-R控制图数据表
解:(1)平均值的中心值x=10001,R=0136
(2)根据表1-15的计算公式求出:
UCL=x+A2R=10001+(058×0136)=10080LCL=x-A2R=10001-(058×0136)=9922
(3)根据R图的计算公式式求出:
R图的CL=R=0136UCL=D4R=211×0136=0287LCL,不必要(4)根据以上数据作图并打点,见图1-20。===图1-20某圆柱销的x-R图4、控制图的分析与判断用控制图识别生产过程的状态,主要是根据样本数据形成的样本点位置以及变化趋势进行分析和判断,判断工序是处于受控状态还是失控状态。(1)受控状态的判断工序是否处于受控状态,也就是工序是否处于统计控制状态或稳定状态,其判断条件有两个:第一个判断条件是在控制界限内的点子排列无缺陷;第二个判断条件是控制图上的所有样本点全部落在控制界限之内。在满足了第一个条件的情况下,对于第二个条件,若点子的排列是随机地处于下列情况,则可认为工序处于受控状态。①连续25个点子没有一点在控制界限以外;②连续35个点子中最多有一点在控制界限以外;③连续100个点子中最多有两点在控制界限以外。因为用少量数据做控制图容易产生错误的判断,所以至少25点才能作判断。从概率理论可知,连续35个点子中,最多一点超出控制界限的概率为09959,至少有一点在界限外的概率为00041,即不超过1%,是个小概率事件。连续100个点子中,最多两点超出控制界限的概率为09974,而至少有两点在界限外的概率为00026,也不超过1%,也是小概率事件。
(2)失控状态的判断只要控制图上的点子出现下列情况时,就可判断工序为失控状态:
首先,控制图上的点子超出控制界限外或恰好在界限上;其次,控制界限内的点子排列方式有缺陷,呈现非随机排列。在3σ界限控制图中,正常条件下,点子越出界限的概率只有027%,这是一个小概率事件,若不是异常状态,点子是不会超出控制界限以外的。另外,即使所有点子落在界限内,但如果有下列排列异常的情况发生,仍有可能判断处于失控状态。同理可以计算下列情况的发生概率,它们也是小概率事件。
控制图有缺陷的状态大致有以下几种:①点子越出控制界限。②点子在控制界限附近,即在2σ~3σ之间。(称为警戒区间)连续3点中有2点在警戒区内(如图1-21);连续7点中有3点在警戒区内;连续10点中有4点在警戒区内。图1-213点中有2点在控制界限附近示意图③点子在中心线一侧连续出现。连续7点在中心线一侧,如图1-22。连续11点中有10点在中心线一侧;连续14点中有12点在中心线一侧;连续17点中有14点在中心线一侧;连续20点中有17点在中心线一侧;如图1-23。④点子有连续上升或下降趋向,如点数≥7,则判断有系统性因素影响。如图1-24。⑤点子在波动呈现周期性变化,表明生产过程有系统性因素发生。图1-227点链图1-23多点在中心线一侧出现示意图图1-24出现7点倾向的示意图
无论是控制图上的点子超出控制界限外或恰好在界限上,还是控制界限内的点子排列方式有缺陷,呈现非随机排列,这两种情况都说明生产过程中存在系统性的因素,对某个质量特征值的平均值和标准差产生影响,应查明情况以便及时采取措施。在使用控制图对质量进行分析和控制时,最重要的步骤是选择控制项目及其质量特征。一般可以选技术复杂、加工精度要求严格、对后续工序的质量产生较大影响、质量不稳定或用户反馈意见较多的工序中的关键特征值作为控制对象。为什么上述各种情况有些是正常的有些不是正常的,这涉及到控制图缺陷的概率计算。在统计假设检验中,小概率数值常取005与001。而判别控制图中点子排列有缺陷的小概率数值标准常取001。
常见的概率计算公式为:
Px=k=Cnpk(1-p)n-k
(k=1,2,…,n)(0<p<1)这是二项式分布概率的计算公式。它的应用条件是:①每次试验只有两种结果,即成功或失败;②每次试验是相互独立的。控制图中“7点链”等四种现象,基本上是满足这两个条件的。如,一个点子不是落在中心线这一侧,就是落在中心线另一侧,只有这两种试验结果;而相邻两个点子落在哪一侧又是相互独立的。又如,一个点子要么落在±2σ~±3σ范围内,要么落在这一范围外,也是只有两种试验结果;而且相邻两个点子是否落在±2σ~±3σ范围内,也是相互独立的。k
例如,“7点链”的点子落在中心线两侧的概率是相同的,其值取05(严格地讲,点子落在μ±3α界限内的概率为09973,而落在这一范围内的中心线一侧的概率为09973÷2=049865)。则,7点链的现象中,n=7,p=05。所以“7点链”出现的概率值为:因为00078<001(小概率标准值),所以“7点链”应判为点子排列有缺陷。5、控制图的两种错误判断根据控制图的控制界限所作为的判断也可能发生错误。这种可能的错误有两种:第一种错误是将正常判为异常;第二种错误是将异常判为正常。在生产正常的情况下,点子出界的可能性为3‰。3‰这数值虽然很小,但这类事件总还是可能发生的。这样,在纯粹出于偶然点子出界的场合,我们根据点子出界判断生产过程异常就犯了虚发警报的错误,这种错误就叫做第一种错误。另有一种情况,即生产过程已经有了异常,产品质量的分布偏离了典型分误。另有一种情况,即生产过程已经有了异常,产品质量的分布偏离了典型分布,可是总还有一部分产品的质量特征值是在上下控制界线之内的。如果我们抽取到这样的产品进行检验,那么,这时由于点子未出界判断生产过程正常,就犯了漏发警报的错误,这种错误就叫做第二种错误。
由于在应用控制图的过程中,是通过抽查来检验产品质量的,所以要想不犯错误是办不到的。事实上,在控制图上,我们所能变动的不外乎是上下控制界限间的间距。如果我们把这间距拉大,显然,这时犯第一种错误的可能性减小,而犯第二种错误的可能性增大,这两者是矛盾的。反之,如果我们把这间距缩小,则犯第一种错误的可能性增大,而犯第二种错误的可能性减小,这两者也是矛盾的。因此,我们只能根据第一种错误和第二种错误这两种错误所造成的总损失为最小这一准则来确定上下控制界限。经验证明,UCL=μ+3σ,LCL=μ-3σ的所谓3σ方式就是两种错误所造成的总损失最小的控制界限。美国、日本和我国等世界大多数国家都采用3σ方式。而英国和北欧等少数国家则采用所谓概率界限方式。在这种方式中,超出一侧控制界限的概率,人为地定为1‰、25‰和5‰等数值。选择过程确定描述过程性能的产品或过程特点选择适当的控制图类型在一段时间里进行过程性能度量在控制图上画度量数据根据度量数据用适当的计算,确定性能特点的中线和控制限过程稳定,继续度量所有的度量值都在限制内并且在中线周围随机分布吗?确定并排除可归属原因过程不稳定1是否2345678910使用控制图评估过程稳定性的步骤找到原因分析原因调查表分层法排列图因果图控制图散布图直方图6M1E
人、机、料、法、测量、信息、环境5个为什么
丰田生产方式:“反复提出五次为什么”5W2H
做什么(What)、何时(When)何地(Where)、为什么(Why)、谁(Who)来做、如何做(How),到什么程度(Howmuch)新七项质量工具
关联图、系统图(也称树图)、亲和图(也称KJ法A型图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业机械化与农业生态环境保护法规考核试卷
- 《个人所得税调节城镇居民消费的效应分析》
- 《华蟾毒精对淋巴细胞和巨噬细胞免疫调节活性的研究》
- 《同步监测氧气和温度的新型便携式传感器研究与实现》
- 《一类似星树的谱半径问题研究》
- 2024年度医疗健康产业贷款连带责任借款担保合同范本2篇
- 不含括号的混合运算
- 2024年度智能医疗诊断系统委托技术开发合同范本3篇
- 云计算与物联网融合趋势-洞察分析
- 体育器械模块化设计-洞察分析
- 期末试卷-2023-2024学年科学六年级下册青岛版
- 2024年江苏省连云港市中考数学试卷
- 2024年山东临沂市恒源热力集团限公司高校毕业生招聘9人重点基础提升难、易点模拟试题(共500题)附带答案详解
- 2024专升本英语答题卡浙江省
- 医疗技术临床应用管理档案(姓名+工号)
- 直通法国-阅读与文化智慧树知到期末考试答案章节答案2024年青岛大学
- (正式版)JBT 11517-2024 刮板取料机
- 商务数据分析智慧树知到期末考试答案2024年
- 2019年10月广东省自考00850广告设计基础试题及答案含解析
- 体育教师生涯发展展示
- 智联招聘题库国企笔试题型
评论
0/150
提交评论