实战:酒店管理中如何用好大数据_第1页
实战:酒店管理中如何用好大数据_第2页
实战:酒店管理中如何用好大数据_第3页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实战:酒店管理中如何用好大数据?

随着云计算的诞生,行业迎来了大数据的时代。“大数据”这一互联网领域的主流词汇,也开始触动着酒店管理者的神经,搅动着酒店管理者的思维;诸多的酒店业人士也开始关注大数据这一可释放出巨大价值的领域,探讨和学习如何借助该领域的技术为饭店经营管理服务也是当今酒店管理者面临的挑战。大数据的核心在于可以帮助客户挖掘数据中蕴藏的价值,而不是简单的数据计算,其可借助云计算技术针对不同领域的商业模式来形成大数据的应用模式,通过计算机和互联网技术领域精英团队参与来为不同领域的客户服务,意味着大数据产业的未来发展前景非常广阔。那么,作为第三产业的酒店服务业如何来借助大数据技术为酒店经营管理服务呢?大数据又能给酒店经营管理提供什么帮助呢?笔者依据多年的从业经验和对酒店数据的挖掘研究认为可从饭店以下几个管理环节入手并加以应用,来帮助饭店在前期市场定位、营销管理、收益管理和质量管理等方面推进工作,最终构建正确的产品、赢得更多的忠诚客户,提高市场竞争力,实现收益最大化。一、大数据的支持更有益于精确的前期市场定位建造一座酒店,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合建造一家酒店。如果适合建造一家酒店,那么,这家酒店的文化主题是什么?建什么样的规模和档次?设计什么样的产品?酒店的客源群体是什么?能卖到什么样的价格?未来市场的供需情况等等,这些内容都需要在酒店建造之前来确定,也就是我们常说的前期市场定位。建造一家酒店不仅要需要投入大量的资金,而且建设期一般需要3到5年或者更长,建造成本很高;一旦饭店建好投入运营,再想改变其市场定位就非常困难了,可以说前期市场定位是一项不容有任何偏差的工作。否则,将会给投资商带来不可估量的后期损失。由此看出,前期市场定位对建造酒店非常重要,只有定位准确乃至精确,才能使建造出的酒店与未来市场环境相适应,构建出能满足市场需求的酒店产品,使酒店在竞争中立于不败之地。然而,要想做到这一点,就必须有足够的相关数据和市场信息来供酒店研究人员分析和判断,仅凭工作经验是远远不够的。通常,在酒店前期市场定位中,相关数据的收集主要来自于统计年鉴、行业管理部门数据、相关行业报告、行业专家意见及属地市场调查等,这些数据多存在样本量不足,时间滞后和准确度低等缺陷,酒店研究人员能够获得的信息量非常有限,使准确的市场定位存在着数据瓶颈。随着大数据时代的来临,借助云计算和数据挖掘技术不仅能给研究人员提供足够的样本量和数据信息,还能够通过建立数学模型借助历史数据对未来市场进行预测,为研究人员数据收集、统计和分析提供了更加广阔的空间。当然,仅靠酒店本身来完成大量数据的收集和统计分析工作是有困难的,还需要相关数据公司的帮助,为酒店制定更精准的前期市场定位。二、大数据未来将成为饭店市场营销工作的利器在酒店市场营销工作中,无论是产品、渠道、价格还是顾客,可以说每一项工作都与市场数据息息相关,而以下两个方面又是饭店市场营销工作中的重中之重。一是通过获取数据并加以统计分析来充分了解市场信息,掌握竞争者的商情和动态,知晓酒店在竞争群中所处的市场地位,来达到“知彼知己,百战不殆”的目的;二是酒店通过积累和挖掘顾客档案数据,有助于分析顾客的消费行为和价值趣向,便于更好地为顾客服务和发展忠诚顾客,形成饭店稳定的会员客户。在传统的市场竞争模式中,由于酒店获取数据资源的途径有限,只能够依靠有限的调查数据对个体竞争者进行比较分析,无法全面掌握市场动态和供需情况,特别是竞争态势,更难以确定饭店在竞争市场中所处的地位,给酒店制订正确的竞争策略带来困难。随着酒店营销管理理念的不断更新,原有传统营销模式已面临着严峻的挑战,对管理者准确掌握市场信息,精确了解竞争对手动态,制订合适的价格提出了更高的要求。市场竞争的分析也由原来简单的客房出租率、平均房价、RevPAR分析转化为对竞争群的数据分析,如:市场渗透指数(MPI)、平均房价指数(ARI)、收入指数(RGI)等,从维度上讲还有时间维度、市场份额及同比变化率等。通过这些市场标杆数据的分析,可以使酒店管理者充分掌握市场供求关系变化的信息,了解酒店潜在的市场需求,准确获得竞争者的商情,最终确定酒店在竞争市场中的地位,从而对酒店制订准确的营销策略,打造差异化产品,制订合适的价格起到关键的作用。而大数据的应用概念正是需要酒店获取这些市场市场数据,并通过统计与分析技术来为酒店提供帮助。在对顾客的消费行为和趣向分析方面,如果酒店平时善于积累、收集和整理顾客在饭店消费行为方面的信息数据,如:顾客在饭店的花费、选择的订房渠道、偏好的房间类型、停留的平均天数、来酒店属地的目的、喜欢的背景音乐和菜肴等。如果酒店积累并掌握了这些数据,便可通过统计和分析来掌握顾客消费行为和兴趣偏好。当顾客再次到店时发现你已经为他准备好了喜欢入住的房间,播放着他爱听的音乐,为他推荐喜欢吃的菜肴,那么他已经是你的忠诚顾客了。因此,可以说数据中蕴含着出奇制胜的力量,如果饭店管理者善于在市场营销加以运用,将成饭店在市场竞争中立于不败之地的利器。三、酒店收益管理更是离不开数据的支持收益管理作为实现酒店收益最大化的一门理论学科,近年来已受到业界的普遍关注并加以推广运用,收益管理的含义把合适的产品或服务,在合适的时间,以合适的价格,通过合适的销售渠道,出售给合适的顾客,最终实现饭店收益最大化目标。要做到以上五个要素的有效组合,需求预测、细分市场和敏感度分析是此项工作的三个重要环节。需求预测是通过数据的统计与分析,采取科学的预测方法,通过建立数学模型,使饭店管理者掌握和了解潜在的市场需求,未来一段时间每个细分市场的订房量和酒店的价格走势等,从而使酒店能够通过价格的杠杆来调节市场的供需平衡,并针对不同的细分市场来实行动态定价和差别定价;在市场需求旺盛的时候通过提高价格来盈得更大的收益,在市场疲软的时期通过推出促销价和折扣价等方式来招徕客源,以此来保证酒店在不同市场周期中的收益最大化。需求预测的好处在于可提高酒店管理者对市场判断的前瞻性,并在不同的市场波动周期以合适的产品和价格投放市场,获得潜在的收益。细分市场为酒店准确预测订房量和实行差别定价提供了条件,差别定价是通过对同一种酒店产品(如:同类型的客房、餐食和康体项目等)按不同的细分市场制定不同价格的行为和方法,其特点是对高支付意愿的顾客收取高价,对低支付意愿的顾客收取低价,从而把产品留给最有价值的顾客。其科学性体现在通过市场需求预测来制定和更新价格,最大化各个细分市场的收益。敏感度分析是通过需求价格弹性分析技术,对不同细分市场的价格进行优化,最大限度地挖掘市场潜在的收入。酒店管理者可通过价格优化方法找到酒店不同市场周期每个细分市场的最佳可售房价—BAR,并通过预订控制手段为最有价值的顾客预留或保留客房,较好地解决了房间因过早被折扣顾客预订而遭受损失的难题。大数据时代的来临,为酒店收益管理工作的开展提供了更加广阔的空间。需求预测、细分市场和敏感度分析对数据需求量很大,以往多是采集的是酒店自身的历史数据来进行预测和分析,容易忽视外界市场信息数据,难免使预测的结果存在一定的离差。酒店在实施收益管理过程中如果能在酒店自有数据的基础上,借助更多的市场数据,了解更多的市场信息,同时引入竞争分析,将会对制订准确的收益策略,盈得更高的收益起到推进作用。四、客评的多维度分析成为挖掘饭店服务质量潜力的重要要素网络评论,最早源自于互联网论坛,是供网友闲暇之余相互交流的网络社交平台。过去,顾客住店后对酒店在互联网上的评价,也就是我们常说的客评并没有引起酒店管理者的足够的重视,针对顾客反映的问题,多数酒店没有做到及时的回复甚至是根本不回复,日常管理中是否及时解决了客评中反映的问题就更不得而知了,这不仅拉大了与顾客之间的距离,而且顾客与酒店之间的信息显得更加不对称,失去了酒店与顾客情感互动和交流的机会。随着互联网和电子商务的发展,现今的酒店客评已不再是过去简单意义上评论,已发生了质的转变,由过去顾客对酒店服务简单表扬与评批演变为多内容、多渠道和多维度的客观真实评价,顾客的评价内容也更趋于专业化和理性化,发布的渠道也更加广泛。因此,如今的客评不仅受到了酒店管理者的重视,更是受到消费者的高度关注。有市场调查显示,超过70%的客人在订房前都会浏览该酒店的客评,成为主导顾客是否预订这家酒店的主要动机因素之一。从某种角度看,客评在互联网走进人们生活的今天已成为衡量酒店品牌价值、服务质量和产品价值的重要要素。多维度地对客评数据进行收集、统计和分析将会有助于酒店深入了解顾客的消费行为、价值趣向和酒店产品质量存在的不足,对改进和创新产品,量化产品价值,制订合理的价格及提高服务质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论