红外光谱解谱_第1页
红外光谱解谱_第2页
红外光谱解谱_第3页
红外光谱解谱_第4页
红外光谱解谱_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于红外光谱解谱第一页,共五十三页,2022年,8月28日3.1概述1.定义:红外光谱又称分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。主要用于化合物鉴定及分子结构表征,亦可用于定量分析。第二页,共五十三页,2022年,8月28日红外光谱的表示方法:红外光谱以T~或T~

来表示,下图为苯酚的红外光谱。T(%)注意换算公式:第三页,共五十三页,2022年,8月28日2.红外光区划分红外光谱(0.75~1000m)远红外(转动区)(25-1000m)中红外(振动区)(2.5~25m)近红外(泛频)(0.75~2.5m)倍频分子振动转动分子转动分区及波长范围跃迁类型(常用区)13158~4000/cm-1400~10/cm-14000~400/cm-1第四页,共五十三页,2022年,8月28日Thatis0.75-1000μm(1μm=10-4cm)FIR0.75-2.5μmMIR2.5-25μm(4000-400cm-1)NIR25-1000μmWavenumber(υ)=104/λ(μm)第五页,共五十三页,2022年,8月28日TypeofRadiationFrequencyRange(Hz)WavelengthRangeTypeofTransitiongamma-rays1020-1024<1pmnuclearX-rays1017-10201nm-1pminnerelectronultraviolet1015-1017400nm-1nmouterelectronvisible4-7.5x1014750nm-400nmouterelectronnear-infrared1x1014-4x10142.5µm-750nmouterelectronmolecularvibrationsinfrared1013-101425µm-2.5µmmolecularvibrationsmicrowaves3x1011-10131mm-25µmmolecularrotations,electronspinflips*radiowaves<3x1011>1mmnuclearspinflips*第六页,共五十三页,2022年,8月28日3.红外光谱特点1)红外吸收只有振-转跃迁,能量低;2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;3)分子结构更为精细的表征:通过IR谱的波数位置、波峰数目及强度确定分子基团、分子结构;4)定量分析;5)固、液、气态样均可用,且用量少、不破坏样品;6)分析速度快。7)与色谱等联用(GC-FTIR)具有强大的定性功能。第七页,共五十三页,2022年,8月28日3.2基本原理1.产生红外吸收的条件分子吸收辐射产生振转跃迁必须满足两个条件:条件一:辐射光子的能量应与振动跃迁所需能量相等。根据量子力学原理,分子振动能量Ev是量子化的,即EV=(V+1/2)h为分子振动频率,V为振动量子数,其值取0,1,2,…

分子中不同振动能级差为EV=Vh

也就是说,只有当EV=Ea或者a=V时,才可能发生振转跃迁。例如当分子从基态(V=0)跃迁到第一激发态(V=1),此时V=1,即a=第八页,共五十三页,2022年,8月28日条件二:辐射与物质之间必须有耦合作用磁场电场交变磁场分子固有振动a偶极矩变化(能级跃迁)耦合不耦合红外吸收无偶极矩变化无红外吸收第九页,共五十三页,2022年,8月28日2.分子振动1)双原子分子振动分子的两个原子以其平衡点为中心,以很小的振幅(与核间距相比)作周期性“简谐”振动,其振动可用经典刚性振动描述:k为化学键的力常数(dyn/cm);c=31010cm/s;为双原子折合质量如折合质量以原子质量为单位;k以mdyn/Å为单位。则有:第十页,共五十三页,2022年,8月28日例如:HCl分子k=5.1mdyn/Å,则HCl的振动频率为:对于C-H:k=5mdyn/Å;=2920cm-1对于C=C,k=10mdyn/Å,=1683cm-1对于C-C,k=5mdyn/Å;=1190cm-1=1=6第十一页,共五十三页,2022年,8月28日

影响基本振动跃迁的波数或频率的直接因素为化学键力常数k

和原子质量。k大,化学键的振动波数高,如:kCC(2222cm-1)>kC=C(1667cm-1)>kC-C(1429cm-1)(质量相近)质量m大,化学键的振动波数低,如:mC-C(1430cm-1)<mC-N(1330cm-1)<mC-O(1280cm-1)(力常数相近)经典力学导出的波数计算式为近似式。因为振动能量变化是量子化的,分子中各基团之间、化学键之间会相互影响,即分子振动的波数与分子结构(内因)和所处的化学环境(外因)有关。第十二页,共五十三页,2022年,8月28日2)多原子分子多原子分子的振动更为复杂(原子多、化学键多、空间结构复杂),但可将其分解为多个简正振动来研究。简正振动整个分子质心不变、整体不转动、各原子在原地作简谐振动且频率及位相相同。此时分子中的任何振动可视为所有上述简谐振动的线性组合。简正振动基本形式伸缩振动:原子沿键轴方向伸缩,键长变化但键角不变的振动。变形振动:基团键角发生周期性变化,但键长不变的振动。又称弯曲振动或变角振动。下图给出了各种可能的振动形式(以甲基和亚甲基为例)。第十三页,共五十三页,2022年,8月28日第十四页,共五十三页,2022年,8月28日理论振动数(峰数)设分子的原子数为n,对非线型分子,理论振动数=3n-6

如H2O分子,其振动数为3×3-6=3对线型分子,理论振动数=3n-5

如CO2分子,其理论振动数为3×3-5=4非线型分子:n个原子一般有3n个自由度,但有3个平动和3个绕轴转动无能量变化;线型分子:n个原子一般有3n个自由度,但有3个平动和2个绕轴转动无能量变化。第十五页,共五十三页,2022年,8月28日

理论上,多原子分子的振动数应与谱峰数相同,但实际上,谱峰数常常少于理论计算出的振动数,这是因为:a)偶极矩的变化=0的振动,不产生红外吸收,如CO2;b)谱线简并(振动形式不同,但其频率相同);c)仪器分辨率或灵敏度不够,有些谱峰观察不到。以上介绍了基本振动所产生的谱峰,即基频峰(V=±1允许跃迁)。在红外光谱中还可观察到其它峰跃迁禁阻峰:倍频峰:由基态向第二、三….振动激发态的跃迁(V=±2、±3.);合频峰:分子吸收光子后,同时发生频率为1,2的跃迁,此时产生的跃迁为1+2的谱峰。差频峰:当吸收峰与发射峰相重叠时产生的峰1-2。

泛频峰可以观察到,但很弱,可提供分子的“指纹”。泛频峰第十六页,共五十三页,2022年,8月28日3.谱带强度分子对称度高,振动偶极矩小,产生的谱带就弱;反之则强。如C=C,C-C因对称度高,其振动峰强度小;而C=X,C-X,因对称性低,其振动峰强度就大。峰强度可用很强(vs)、强(s)、中(m)、弱(w)、很弱(vw)等来表示。说明:1)吸收峰强度与分子偶极距变化的平方成正比。而偶极距变化主要由化学键两端原子间的电负性差;振动形式;其它如共振、氢键、共轭等因素;2)强度比UV-Vis强度小2-3个数量级;3)IR光度计能量低,需用宽狭缝,同一物质的随不同仪器而不同,因此常用vs,s,m等来表示吸收强度。第十七页,共五十三页,2022年,8月28日4.振动频率1)基团频率通过对大量标准样品的红外光谱的研究,处于不同有机物分子的同一种官能团的振动频率变化不大,即具有明显的特征性。这是因为连接原子的主要为价键力,处于不同分子中的价键力受外界因素的影响有限!即各基团有其自已特征的吸收谱带。通常,基团频率位于4000~1300cm-1之间。可分为三个区。第十八页,共五十三页,2022年,8月28日第十九页,共五十三页,2022年,8月28日X-H伸缩振动区:4000-2500cm-1

第二十页,共五十三页,2022年,8月28日Region:X-HStretching(X=C,O,N,S)4000-2500cm-1

第二十一页,共五十三页,2022年,8月28日叁键及累积双键区(2500~1900cm-1)第二十二页,共五十三页,2022年,8月28日Region:Triple&CumulativeDoubleBondStretching(-C≡C-,-C≡N,-C=C=C,-C=C=O)2500-2000cm-1

o第二十三页,共五十三页,2022年,8月28日双键伸缩振动区(1900~1200cm-1)C第二十四页,共五十三页,2022年,8月28日Region:DoubleBondStretching(-N=O,-C=N-,-C=C-,-C=O-)2000-1500cm-1

o第二十五页,共五十三页,2022年,8月28日苯衍生物的红外光谱图第二十六页,共五十三页,2022年,8月28日2)指纹区(可分为两个区)

在红外分析中,通常一个基团有多个振动形式,同时产生多个谱峰(基团特征峰及指纹峰),各类峰之间相互依存、相互佐证。通过一系列的峰才能准确确定一个基团的存在。第二十七页,共五十三页,2022年,8月28日Region:SingleBondVibration&FingerPrintRegion(C-H,-C-O,C-O,C-N-C-X)1500-670cm-1

oo第二十八页,共五十三页,2022年,8月28日5.影响基团频率的因素

基团频率主要由化学键的力常数决定。但分子结构和外部环境因素也对其频率有一定的影响。1)电子效应:引起化学键电子分布不均匀的效应。诱导效应(Inductioneffect):取代基电负性—静电诱导—电子分布改变—k增加—特征频率增加(移向高波数)。共轭效应(Conjugatedeffect):电子云密度均化—键长变长—

k降低—特征频率减小(移向低波数)。中介效应(Mesomericeffect):孤对电子与多重键相连产生的p-共轭,结果类似于共轭效应。当诱导与共轭两种效应同时存在时,振动频率的位移和程度取决于它们的净效应。第二十九页,共五十三页,2022年,8月28日2)氢键效应(X-H)形成氢键使电子云密度平均化(缔合态),使体系能量下降,基团伸缩振动频率降低,其强度增加但峰形变宽。如羧酸RCOOH(C=O=1760cm-1,O-H=3550cm-1);

(RCOOH)2(C=O=1700cm-1,O-H=3250-2500cm-1)如乙醇:CH3CH2OH(O=H=3640cm-1)

(CH3CH2OH)2(O=H=3515cm-1)

(CH3CH2OH)n(O=H=3350cm-1)3)振动耦合(Coupling)当两个振动频率相同或相近的基团相邻并由同一原子相连时,两个振动相互作用(微扰)产生共振,谱带一分为二(高频和低频)。如羧酸酐分裂为C=O(

as1820、s1760cm-1)第三十页,共五十三页,2022年,8月28日4)费米共振当一振动的倍频与另一振动的基频接近(2A=B)时,二者相互作用而产生强吸收峰或发生裂分的现象。Ar-C()=880-860cm-1C=O(as)=1774cm-11773cm-11736cm-15)空间效应由于空间阻隔,分子平面与双键不在同一平面,此时共轭效应下降,红外峰移向高波数。CCH3OOCH3CCH3C=O=1663cm-1C=O=1686cm-1

空间效应的另一种情况是张力效应:四元环>五元环>六元环。随环张力增加,红外峰向高波数移动。第三十一页,共五十三页,2022年,8月28日6)物质状态及制样方法通常,物质由固态向气态变化,其波数将增加。如丙酮在液态时,C=O=1718cm-1;气态时C=O=1742cm-1,因此在查阅标准红外图谱时,应注意试样状态和制样方法。7)溶剂效应极性基团的伸缩振动频率通常随溶剂极性增加而降低。如羧酸中的羰基C=O:气态时:C=O=1780cm-1

非极性溶剂:C=O=1760cm-1

乙醚溶剂:C=O=1735cm-1

乙醇溶剂:C=O=1720cm-1因此红外光谱通常需在非极性溶剂中测量。第三十二页,共五十三页,2022年,8月28日3.3红外光谱仪目前有两类红外光谱仪:色散型和傅立叶变换型(FourierTransfer,FT)一、色散型:与双光束UV-Vis仪器类似,但部件材料和顺序不同。调节T%或称基线调平器置于吸收池之后可避免杂散光的干扰第三十三页,共五十三页,2022年,8月28日1.光源常用的红外光源有Nernst灯和硅碳棒。第三十四页,共五十三页,2022年,8月28日2.吸收池红外吸收池使用可透过红外的材料制成窗片;不同的样品状态(固、液、气态)使用不同的样品池,固态样品可与晶体混合压片制成。第三十五页,共五十三页,2022年,8月28日3.单色器由色散元件、准直镜和狭缝构成。其中可用几个光栅来增加波数范围,狭缝宽度应可调。狭缝越窄,分辨率越高,但光源到达检测器的能量输出减少,这在红外光谱分析中尤为突出。为减少长波部分能量损失,改善检测器响应,通常采取程序增减狭缝宽度的办法,即随辐射能量降低,狭缝宽度自动增加,保持到达检测器的辐射能量的恒定。4.检测器及记录仪红外光能量低,因此常用热电偶、测热辐射计、热释电检测器和碲镉汞检测器等。第三十六页,共五十三页,2022年,8月28日几种红外检测器第三十七页,共五十三页,2022年,8月28日以光栅为分光元件的红外光谱仪不足之处:1)需采用狭缝,光能量受到限制;2)扫描速度慢,不适于动态分析及和其它仪器联用;3)不适于过强或过弱的吸收信号的分析。第三十八页,共五十三页,2022年,8月28日二、傅立叶红外光谱仪它是利用光的相干性原理而设计的干涉型红外分光光度仪。仪器组成为:红外光源摆动的凹面镜摆动的凹面镜迈克尔逊干扰仪检测器样品池参比池同步摆动干涉图谱计算机解析红外谱图还原M1BSIIIM2D第三十九页,共五十三页,2022年,8月28日单色光单色光二色光多色光单、双及多色光的干涉示意图第四十页,共五十三页,2022年,8月28日多色干涉光经样品吸收后的干涉图(a)及其Fourier变换后的红外光谱图(b)第四十一页,共五十三页,2022年,8月28日3.4试样制备一、对试样的要求1)试样应为“纯物质”(>98%),通常在分析前,样品需要纯化;对于GC-FTIR则无此要求。2)试样不含有水(水可产生红外吸收且可侵蚀盐窗);3)试样浓度或厚度应适当,以使T在合适范围。二、制样方法液体或溶液试样1)沸点低易挥发的样品:液体池法。2)高沸点的样品:液膜法(夹于两盐片之间)。3)固体样品可溶于CS2或CCl4等无强吸收的溶液中。第四十二页,共五十三页,2022年,8月28日

固体试样1)压片法:1~2mg样+200mgKBr——干燥处理——研细:粒度小于2m(散射小)——混合压成透明薄片——直接测定;2)石蜡糊法:试样——磨细——与液体石蜡混合——夹于盐片间;

(石蜡为高碳数饱和烷烃,因此该法不适于研究饱和烷烃)。3)薄膜法:高分子试样——加热熔融——涂制或压制成膜;高分子试样——溶于低沸点溶剂——涂渍于盐片——挥发除溶剂样

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论