下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(时间:100分钟,满分:120分一、选择题(10550分.在每小题给出的四个选项中, A. 解析:选B.原式=→+→
→-
=→-→
→+→
=,
已知i=(1,0),j=(0,1),则与2i+3j垂直的向量是( 选所以与-3i+2j A.两个单位向量的数量积为1B.若a·b=a·c,且a≠0,则b=c 则不成立,B错;C中,应为→=,C错;D中,b⊥c,b·c=0,已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x的值是( 解析:选D.a=(1,1),b=(2,x),a+b=(3,x+1),4b-2a=(6,4x-2),由于a+b与4b-2a平行,得6(x+1)-3(4x-2)=0,解得x=2.已知两个非零向量a,b满足|a+b|=|a-b|,则下面结论正确的是( 选所以选已知向量a=(3,4),b=(-3,1),a与b的夹角为θ,则tanθ等于 解析:选D.由题意,a·b=3×(-3)+4×1=-5,|a|=5,|b|==则cosθ= -5=-1.= ∵θ∈[0,π],∴sin 1-cos2θ=3 sin ∴tan cos D的坐标为(
解析:选A.
故 们的夹角为120°时,合力的大小为( B.102B.102D.102 2解析:B.F1,F2,90°,2 2法则可知力的合成构成一个等边三角形,102A,B,C,D
→+→-
→→=0,则的形状是
解析:B.
→-
(AB+AC)·(AB-AC)=(AB+AC)·(AB-AC)=AB-AC
→ →∴ λ,使得
→
λ为“向量关于和的终点共线分解系数”.若已知P1(3,1),P2(-1,3),且向量→3与向量a=(1,1)垂直,则“量 解析:选D.设→=(x,y),则由→⊥a于是→
设 OP=λOP+(1-λ)OP二、填空题(5420分.把答案填在题中横线上已知点A(-1,-5),a=(2,3),若→=3a,则点B的坐标 解析: e1+2e2,即e1+2e2=λa+μb,则 解析: 得e1=1+2
∴e1+2e2=2-1,1
a·c=b·c,
|c|→ 解析:∵→
=2,∴→→设向量a,b满足:|a|=3,|b|=4,a·b=0,以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 多有4个交点.三、解答题(51050分.解答时应写出必要的文字说明、(2)aa+b 42+32+2×(-6)=13.1010∴aa+b
abθ,|a|=2,|b|=当
=6ab=|a|2-3a·bab≥7θ解:(1)∵a∥b,∴cos=-2+23cosθ=-2±26(2)∵|2a-b|2=4|a|2-4a·b+|b|2=16-4×2×3×cos5π+3=31,∴|2a-b|=6又∴|2a-b|+(a+b)·(a-b)=(3)∵ab=|a|2-3a·b=4-3×2×3cos2∴cos2[3[3
AQ,BPR,若=aab表示
若|a|=1,|b|=2,ab60°RRH⊥ABABHa,b表示解
1 A,R,Q三点共线,可设=故
3 同理,B,R,P三点共线,可设
故
36,36由于a与b不共线,则有 解得 ∴
A,H,B三点共线,可设=→,则则
∴[(λ-1+ 又∵a·b=|a||b|cos 若 π,且a∥(b+c),求x的值又2∴-(2+sinx)=sinx-1,sin2又 π (2)∵a=(2+sin∴f(x)=a·b=2(2+sinx)-2=2sin∴当sinx=-1时,f(x)有最小值,且最小值为0.(3)a+d=(3+sinx,1+k),b+c=(sinx-1,-1),即(3+sinx)(sin∴k=sin2x+2sinx-4=(sinsinx∈[-1,1],sin∴(sin存在形,B为直角顶点.(2)C(s,t)是第一象限的点,若→=→-,m∈RmP 解:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年秋季学期小学安全工作计划
- 《施工质量控制要点》课件
- 2024志愿者个人工作计划
- 元旦文艺晚会计划方案
- 关于办公室文秘工作计划
- 2024年小学语文四年级教学计划
- 推动计划生育事业健康发展的规定
- 有关骨干教师工作计划锦集
- 8住房保障工作总结和某年工作计划
- 学校行政部门年度工作计划
- 团购被子合同范例
- 管理学基础知识考试题库(附含答案)
- 2023-2024学年广东省深圳市福田区八年级(上)期末英语试卷
- 2024年高考物理复习试题分类训练:动量(教师卷)
- 2024年军事理论知识全册复习题库及答案
- FA合同协议模板新
- 幼儿园安全风险分级管控和隐患排查治理双重预防机制实施方案
- 餐饮服务电子教案 学习任务3 西餐宴会服务
- 三级综合医院评审标准(2024年版)
- 2024智慧城市数据采集标准规范
- 第十一届“大唐杯”新一代信息通信技术大赛(省赛)考试题及答案
评论
0/150
提交评论