下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市秀容中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知球的表面积为64π,则它的体积为()A.16π B.π C.36π D.π参考答案:B【考点】球的体积和表面积.【分析】根据球的表面积公式求出球的半径,然后计算球的体积即可.【解答】解:设球的半径为r,∵球的表面积为64π,∴4πr2=64π,即r2=16,解得r=4,∴球的体积为=.故选B.2.下列两个变量不是相关关系的是(
)A.人的身高和体重
B.降雪量和交通事故发生率C.匀速行驶的车辆的行驶距离和时间
D.每亩施用肥料量和粮食亩产量参考答案:C略3.设是奇函数,且在内是增函数,又,则的解集是A. B.C. D.参考答案:C4.(5分)已知函数f(x)=ax2+(a3﹣a)x+1在(﹣∞,﹣1]上递增,则a的取值范围是() A. a B. C. D. 参考答案:D考点: 函数单调性的性质.专题: 计算题.分析: 函数f(x)=ax2+(a3﹣a)x+1在(﹣∞,﹣1]上递增,由二次函数的图象知此函数一定开口向下,且对称轴在区间的右侧,由此问题解决方法自明.解答: 由题意,本题可以转化为解得当a=0时,函数f(x)=1不符合题意综上知,a的取值范围是故选D点评: 本题考点是函数单调性的性质,考查二次函数的性质与图象,本题由二次函数的图象转化为关于参数的不等式即可,由于二次项的系数带着字母,所以一般要对二次系数为0进行讨论,以确定一次函数时是否满足题意,此项漏掉讨论是此类题失分的一个重点,做题时要注意问题解析的完整性,考虑到每一种情况.5.函数的定义域是()A.(1,+∞) B.(1,2] C.(2,+∞) D.(﹣∞,2)参考答案:B【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,然后求解对数不等式得答案.【解答】解:由=,得0<x﹣1≤1,即1<x≤2.∴函数的定义域是(1,2].故选:B.6.已知等比数列{an}的前n项和为Sn,且,,则=(
).A.90 B.125 C.155 D.180参考答案:C【分析】由等比数列的性质,成等比数列,即可求得,再得出答案.【详解】因为等比数列的前项和为,根据性质所以成等比数列,因为,所以,故故选C【点睛】本题考查了等比数列的性质,若等比数列的前项和为,则也成等比数列,这是解题的关键,属于较为基础题.7.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(﹣,﹣1),则sin(2α﹣)=()A. B.﹣ C. D.﹣参考答案:D【考点】任意角的三角函数的定义.【专题】计算题;三角函数的求值.【分析】利用三角函数的定义确定α,再代入计算即可.【解答】解:∵角α的终边过点P(﹣,﹣1),∴α=+2kπ,∴sin(2α﹣)=sin(4kπ+﹣)=﹣,故选:D.【点评】本题考查求三角函数值,涉及三角函数的定义和特殊角的三角函数,属基础题.8.函数的反函数为(
)A.
B.
C.
D.参考答案:D略9.根据有关资料,围棋状态空间复杂度的上限M约为,而可观测宇宙中普通物质的原子总数N约为.则下列各数中与最接近的是(
)(参考数据:lg2≈0.30)(A)1030(B)1028
(C)1036
(D)1093参考答案:B10.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};(4)集合{x|4<x<5}是有限集.其中正确的说法是()A.只有(1)和(4) B.只有(2)和(3)C.只有(2)
D.以上四种说法都不对参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.通过观察所给两等式的规律,①②请你写出一个(包含上面两命题)一般性的命题:
.参考答案:12.已知函数,若且,则的取值范围是___________.参考答案:作出函数的图象,如图所示.∵时,,∴,即,则,∴,且,∴,即的取值范围是,故答案为.13.函数的值域为
.参考答案:(0,3]14.若OA∥O1A1,OB∥O1B1,则∠AOB与∠A1O1B1的关系是________.参考答案:相等或互补15.狄利克雷是德国著名数学家,函数D(x)=被称为狄利克雷函数,下面给出关于狄利克雷函数D(x)的五个结论:①若x是无理数,则D(D(x))=0;②函数D(x)的值域是[0,1];③函数D(x)偶函数;④若T≠0且T为有理数,则D(x+T)=D(x)对任意的x∈R恒成立;⑤存在不同的三个点A(x1,D(x1)),B(x2,D(x2)),C(x3,D(x3)),使得△ABC为等边角形.其中正确结论的序号是
.参考答案:②③④【考点】分段函数的应用.【分析】①,根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1,从而可判断①;②,根据函数奇偶性的定义,可得f(x)是偶函数,可判断②;③,根据函数的表达式,结合有理数和无理数的性质,得f(x+T)=f(x),可判断③;④,取x1=﹣,x2=0,x3=,可得A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形恰好构成等边三角形,可判断④.【解答】解:①∵当x为有理数时,D(x)=1;当x为无理数时,D(x)=0,∴当x为有理数时,D(D(x))=D(1)=1;当x为无理数时,D(D(x))=D(0)=1,即不管x是有理数还是无理数,均有D(D(x))=1,故①不正确;②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有D(﹣x)=D(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数,∴根据函数的表达式,任取一个不为零的有理数T,D(x+T)=D(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得D(x1)=0,D(x2)=1,D(x3)=0,∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.即真命题是②③④,故答案为:②③④.16.(5分)阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数;如[﹣2]=﹣2,[﹣1.5]=﹣2,[2.5]=2;则的值为
.参考答案:﹣1考点: 函数的值.专题: 计算题;新定义.分析: 先求出各对数值或所处的范围,再用取整函数求解.解答: ∵,,,log21=0,log22=1,0<log23<1,log24=2∴=﹣2+(﹣2)﹣1+0+1+1+2=﹣1故答案为:﹣1点评: 本题是一道新定义题,这类题目要严格按照定义操作,转化为已知的知识和方法求解,还考查了对数的运算及性质.17.用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超过1%,则至少要清洗的次数是
次。参考答案:4次三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一条河自西向东流淌,某人在河南岸处看到河北岸两个目标、分别在东偏北和东偏北方向,此人向东走米到达处之后,再看、,则分别在西偏北和西偏北方向,求目标、之间的距离.(12分)参考答案:略19.(本题满分12分)已知函数,其中、为非零实数,,(1)判断函数的奇偶性,并求、的值;(2)用定义证明在上是增函数。参考答案:20.已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.参考答案:【考点】CF:几何概型;CB:古典概型及其概率计算公式.【分析】(Ⅰ)分a=1,2,3,4,5这五种情况来研究a>0,且≤1的取法共有16种,而所有的取法共有6×6=36种,从而求得所求事件的概率.(Ⅱ)由条件可得,实验的所有结果构成的区域的面积等于S△OMN=×8×8=32,满足条件的区域的面积为S△POM=×8×=,故所求的事件的概率为P=,运算求得结果.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,则a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为6×6=36个,满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1),(3,﹣2),(3,﹣1),(3,1),(4,﹣2),(4,﹣1),(4,1),(4,2),(5,﹣2),(5,﹣1),(5,1),(5,2)共16个,所以,所求概率.…(6分)(Ⅱ)如图,求得区域的面积为.由,求得所以区域内满足a>0且2b≤a的面积为.所以,所求概率.【点评】本题考查了等可能事件的概率与二次函数的单调区间以及简单的线性规划问题相结合的问题,画出实验的所有结果构成的区域,Ⅰ是古典概型的概率求法,Ⅱ是几何概型的概率求法.21.(本小题满分14分)已知函数(,,)的图像如图所示(1)求出函数的解析式;(2)若将函数的图像向右移动个单位得到函数的图像,求出函数的单调增区间及对称中心.参考答案:(1)
(2)增区间
;增区间;对称中心22.(14分)若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)﹣f()<2.参考答案:【考点】抽象函数及其应用;函数单调性的性质.【专题】函数的性质及应用.【分析】(1)利用赋值法即可求f(1)的值,(2)若f(6)=1,结合抽象函数将不等式f(x+3)﹣f()<2进行转化,结合函数的单调性解不等式即可.【解答】解:(1)在f()=f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024带小孩保姆的合同范本
- 2023年单、双长链烷基甲基叔胺项目评价分析报告
- 2024年聚苯硫醚(PPS)及合金项目评价分析报告
- 2024至2030年中国钓鱼长裤数据监测研究报告
- 2024年结构化布线系统的检测设备项目评价分析报告
- 2024至2030年中国磷化铝熏蒸杀虫剂数据监测研究报告
- 2024至2030年中国灯具制品行业投资前景及策略咨询研究报告
- 2024至2030年中国气动拉铆栓数据监测研究报告
- 2024至2030年中国手持式温度检测仪数据监测研究报告
- 2024至2030年中国安适行业投资前景及策略咨询研究报告
- 幼儿园小朋友认识医生和护士(课堂PPT)
- 汽车总线测试方案概要
- 商铺装修工程施工方案.
- 形式发票样本(Proforma Invoice)
- 草坪铺设施工方案
- 临床路径实施情况、存在问题及整改措施
- (完整word版)上海博物馆文物术语中英文对照
- 学、练、评一体化课堂模式下赛的两个问题与对策
- 陕西省尾矿资源综合利用
- 扣件式钢管脚手架施工方案(课程设计,含计算书)
- 常见药品配伍表
评论
0/150
提交评论