下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市季庄联校2022-2023学年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如果集合A=中只有一个元素,则的值是(
)A.0
B.0或1
C.1
D.不能确定参考答案:B2.方程组
的有理数解的个数为
()A.
1
B.
2
C.
3
D.
4参考答案:B3.已知,则(
)A.
B.
C.
D.参考答案:D4.(5分)方程lg|x|=cosx根的个数为() A. 10 B. 8 C. 6 D. 4参考答案:C考点: 根的存在性及根的个数判断.专题: 计算题;作图题;函数的性质及应用.分析: 作函数y=lg|x|与y=cosx的图象,由方程的根与函数的零点的关系求方程的根的个数即可.解答: 作函数y=lg|x|与y=cosx的图象如下,函数y=lg|x|与y=cosx的图象有6个交点,故方程lg|x|=cosx根的个数为6;故选:C.点评: 本题考查了学生作图的能力及数形结合的思想应用,同时考查了函数的零点与方程的根的关系应用,属于基础题.5.在梯形ABCD中,已知,,点P在线段BC上,且,则(
)A. B.C. D.参考答案:C【分析】根据向量加法的三角形法则求解.【详解】因为,,所以,所以.故选C.【点睛】本题考查向量加法的三角形法则.6.设集合,,若,则的取值范围是().A.(-∞,2] B.(-∞,1] C.[1,+∞) D.[2,+∞)参考答案:B∵集合,集合,,∴.故选.7.已知,则A. B. C. D.参考答案:B【分析】直接利用二倍角公式求出结果.【详解】依题意,故选B.【点睛】本小题主要考查余弦的二倍角公式的应用,考查运算求解能力,属于基础题.8.在中,边,的长是方程的两个根,,则A.
B.
C.
D.参考答案:A略9.某工厂在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为
双.A.600 B.800 C.1000 D.1200参考答案:D【分析】根据成等差可得,从而求得第二车间抽取的产品数在抽样产品总数中的比例,根据分层抽样性质可求得结果.【详解】成等差数列
第二车间抽取的产品数占抽样产品总数的比例为:第二车间生产的产品数为:双本题正确选项:D【点睛】本题考查随机抽样中的分层抽样的问题,属于基础题.10.已知函数f(x)是定义在R上的奇函数,且在(0,+∞)上单调递增,若f(﹣1)=0,则不等式f(2x﹣1)>0解集为()A. B. C.(0,1) D.参考答案:A【考点】奇偶性与单调性的综合.【分析】根据函数的奇偶性、单调性可作出函数的草图及函数所的零点,根据图象可对不等式等价转化为具体不等式,解出即可.【解答】解:因为f(x)在(0,+∞)上单调递增且为奇函数,所以f(x)在(﹣∞,0)上也单调递增,f(﹣1)=﹣f(1)=0,作出草图如下所示:由图象知,f(2x﹣1)>0等价于﹣1<2x﹣1<0或2x﹣1>1,解得0<x<或x>1,所以不等式的解集为(0,)∪(1,+∞),故选A.二、填空题:本大题共7小题,每小题4分,共28分11.给出下列四个命题:①函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);②已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2﹣|x|;③若loga<1,则a的取值范围是(0,)∪(2,+∞);④若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.其中所有正确命题的序号是.参考答案:②④【考点】命题的真假判断与应用.【专题】综合题;函数思想;数学模型法;简易逻辑.【分析】求出函数f(x)=loga(2x﹣1)﹣1的图象所过定点判断①;求出x>0时的解析式,然后得到函数f(x)的解析式判断②;直接求解对数不等式得到a的范围判断③;由2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),得2﹣x﹣lnx>2y﹣ln(﹣y),然后结合函数f(x)=2﹣x﹣lnx为定义域内的减函数可得x+y<0.【解答】解:对于①,由2x﹣1=1,得x=1,∴函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,﹣1),故①错误;对于②,函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),设x>0,则﹣x<0,∴f(x)=f(﹣x)=﹣x(﹣x+1)=x(x﹣1),则f(x)的解析式为f(x)=x2﹣|x|,故②正确;对于③,由loga<1,得loga<logaa,当a>1时,不等式成立,当0<a<1时,解得0.则a的取值范围是(0,)∪(1,+∞),故③错误;对于④,由2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),得2﹣x﹣lnx>2y﹣ln(﹣y),∵函数f(x)=2﹣x﹣lnx为定义域内的减函数,∴x<﹣y,即x+y<0,故④正确.故答案为:②④.【点评】本题考查命题的直接判断与应用,考查了基本初等函数的性质及应用,是中档题.12.集合
与集合的元素个数相同,则的取值集合为__________________.参考答案:13.已知,且与的夹角,则
.参考答案:14.命题“有”的否定是
.参考答案:有
解析:“存在即”的否定词是“任意即”,而对“>”的否定是“”.15.已知圆C:x2+y2+8x+12=0,若直线y=kx﹣2与圆C至少有一个公共点,则实数k的取值范围为.参考答案:【考点】直线与圆的位置关系.【分析】由题意利用点到直线的距离小于半径,求出k的范围即可.【解答】解:由题意可知圆的圆心坐标为(﹣4,0),半径为2,因为圆C:x2+y2+8x+12=0,若直线y=kx﹣2与圆C至少有一个公共点,所以≤2,解得k∈.故答案为.16.已知函数定义为中较小者,则的最大值为
参考答案:3略17.直线l与直线3x﹣y+2=0关于y轴对称,则直线l的方程为.参考答案:3x+y﹣2=0【考点】与直线关于点、直线对称的直线方程.【分析】由题意求出直线l的斜率,再求出直线3x﹣y+2=0所过的定点,由直线方程的斜截式得答案.【解答】解:由题意可知,直线l的斜率与直线3x﹣y+2=0斜率互为相反数,∵3x﹣y+2=0的斜率为3,∴直线l的斜率为﹣3,又直线3x﹣y+2=0过点(0,2),∴直线l的方程为y=﹣3x+2,即3x+y﹣2=0.故答案为:3x+y﹣2=0.【点评】本题考查与直线关于直线对称的直线方程,考查了直线方程的斜截式,是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知函数f(x)=loga(a>0,a≠1)是奇函数;(1)求m的值;(2)讨论f(x)的单调性;(3)当f(x)的定义域为(1,a﹣2)时,f(x)的值域为(1,+∞),求a的值.参考答案:考点: 奇偶性与单调性的综合.专题: 函数的性质及应用.分析: (1)直接利用奇函数的定义,化简即可求m的值;(2)求出函数的定义域,通过对数的底数的取值范围讨论f(x)的单调性;(3)当f(x)的定义域为(1,a﹣2)时,利用(2)的结果函数的单调性,结合f(x)的值域为(1,+∞),即可求a的值.解答: (本小题满分14分)解:(1)∵f(x)是奇函数,∴f(﹣x)=﹣f(x),即得m=﹣1;(2)由(1)得,定义域为(﹣∞,﹣1)∪(1,+∞),令,则=为(﹣∞,﹣1)和(1,+∞)上的减函数,当a>1,由复合函数的单调性可得f(x)为(﹣∞,﹣1)和(1,+∞)上的减函数;当0<a<1时,由复合函数的单调性可得f(x)为(﹣∞,﹣1)和(1,+∞)上的增函数;(3)∵a﹣2>1∴a>3由(2)知:函数在(1,a﹣2)上是单调减函数,又∵f(x)∈(1,+∞),∴f(a﹣2)=1,即.解得.点评: 本题考查函数的奇偶性的应用,函数的单调性的应用,考查分析问题解决问题的能力.19.已知向量=(1,sinα),=(2,cosα),且∥,计算:.参考答案:【考点】平面向量共线(平行)的坐标表示;同角三角函数基本关系的运用.【专题】定义法;三角函数的求值;平面向量及应用.【分析】根据向量平行建立方程关系,代入进行化简即可.【解答】解:∵∥,∴2sinα﹣cosα=0,即cosα=2sinα,则===﹣5.【点评】本题主要考查三角函数式的化简和求值,根据向量共线的等价条件进行等量代换是解决本题的关键.比较基础.20.f(x)是奇函数,当x≥0时,f(x)的图象是经过点(3,-6),顶点为(1,2)的抛物线的一部分,(1)求f(x)的解析式;(2)画出其图象.并写出f(x)的单调区间(不用证明);
参考答案:(1)设x≥0时,f(x)=a(x-1)2+2,∵过(3,-6)点,∴a(3-1)2+2=-6,∴a=-2.即f(x)=-2(x-1)2+2.当x<0时,-x>0,∵f(x)为奇函数∴当x<0时,f(x)=-f(-x)=2(-x-1)2-2=2(x+1)2-2,故f(x)=
(2)图略
单增区间是[-1,1]
单减区间(-∞,-1],[1,+∞)略21.已知函数.(1)求函数的值域和单调减区间;(2)已知A,B,C为△ABC的三个内角,且,,求sinA的值.参考答案:(1),;(2).【分析】(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【点睛】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.22.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计数据(xi,yi)(i=1,2,3,4,5)由资料知y对x呈线性相关,并且统计的五组数据得平均值分别为=4,=5.4,若用五组数据得到的线性回归方程=bx+a去估计,使用8年的维修费用比使用7年的维修费用多1.1万元,(1)求回归直线方程;(2)估计使用年限为10年时,维修费用是多少?参考答案:【考点】回归分析的初步应用.【分析】(1)因为线性回归方程=bx+a经过定点(,),将,代入回归方程得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度个人应急资金公对私借款合同3篇
- 二零二五年度企业公务车使用及安全保障合同3篇
- 2025年度废化学品回收与无害化处理合同样板3篇
- 二零二五年度养猪场养殖废弃物无害化处理合同3篇
- 2025年度年度甲级写字楼办公室租赁合同样本3篇
- 二零二五年度木工次结构工程监理与施工合同2篇
- 二零二五年度英法德留学一站式服务合同3篇
- 2025年度农村土地承包经营权入股农业合作社合同2篇
- 二零二五年度农村荒山荒地生态旅游项目投资承包合同
- 2025年度水电设备安装合同分包售后服务合同3篇
- 保洁人员院感培训完整版课件
- 医院发热门诊工作考核表
- 基于PLC的燃油锅炉控制系统设计
- DB13T 2974-2019 信息系统集成服务资费评估指南
- 春节期间施工现场安全方案
- 黑龙江省建筑工程施工质量验收标准DB23-2017
- 自贡鸿鹤化工股份有限公司20万吨离子膜烧碱等量搬迁升级改造项目
- 医院关于成立安全生产领导小组的通知
- 【施工方案】空调百叶施工方案
- ppt模板热烈欢迎领导莅临指导模板课件(15页PPT)
- 领域驱动设计1
评论
0/150
提交评论