下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1章第2课时1.1.2弧度制课前准备温故知新:过去我们学习过用角度制来度量角,这种度量角的方法很好理解,但给出的弧长公式较繁杂,不是很简洁。既然长度和重量等都有多种度量制,那么角度是不是会有更简洁的度量方法呢?研究发现,圆的弧长与半经的比值的大小只与所对圆心角的大小直接相关,而与圆的半经和弧长不直接相关。这就为我们设计度量角的新方法提供了方便。学习目标:了解弧度制.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.同时要求同学们熟记特殊角的弧度数掌握用弧度制表示的弧长公式、扇形面积公式.培养同学们运用弧度制解决具体问题的意识和能力.课前思索:如何解决角度制下公式的烦琐问题?弧度制的引入对解决与角相关问题的优越性在那里?角度制下的角与弧度制下的角如何互化?课堂学习 一、学习引领1.角度制:过去同学们研究过角的度量,当时是用度做单位来度量角,1°的角是如何定义的?实际上是规定周角的作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为.这种度量角的方法便于理解,但在使用时还是有不方便的地方,这就导致能不能用更为简洁的形式度量角的思考。2.弧度制:把等于半径长的圆弧所对的圆心角叫做1弧度的角;正角的弧度数是正数,负角的弧度数是负数,零角的弧度数为零。弧度制的建立将角度与实数建立起一一对应关系。3.为什么可以用弧长与其半径的比值来度量角的大小呢?即这个比值是否与所取的圆的半径大小有关呢?如图,设为的角,圆弧和的长分别为和,点和到点的距离(即圆半径)分别为和,由己学过的弧长公式可得:,,于是.上式表明,以角为圆心角所对的弧长与其半径的比值,由的大小来确定,与所取的半径大小无关,仅与角的大小有关.4.扇形的弧长与面积公式:弧长公式为,面积为,其中为扇形所对应圆的半径;为扇形的中心角。另外任一已知角的弧度数的绝对值,其中为以角为圆心角时所对应的的圆弧长,为圆的半径。5.弧度制与角度制相比,是否具有优点呢?同学们知道在用角度制表示角的时候,人们总是十进制、六十进制并用的.比如角=33°35′2″,其中33、35、2都是十进数,而度、分、秒之间的关系是六十进(退)位的.所以,为了找出与角对应的实数,要经过复杂的计算,这就不是很方便了.在用弧度表示角的时候,人们只用十进制,所以容易找出与角对应的实数.另外,弧度制下的弧长公式l=|α|r,比角度制下的弧长公式,具有更为简洁的形式.还有,如果已知圆心角等于α弧度,那么用弧度制下扇形面积公式S=||r2求扇形面积,也比用角度制下的公式S=更为简洁.6.弧度制下象限角的表示:角的顶点与坐标原点重合,角的始边与轴正半轴重合,角的终边落在第几象限,就称这个角为第几象限角;弧度制下各象限的角的范围如下:①第一象限角表示为(或);②第二象限角表示为(或);③第三象限角表示为(或);④第四象限角表示为(或)。弧度制下的轴线角:角的终边落在坐标轴上称为轴线角(轴上角),这个角不属于任何象限。①终边在轴的非负半轴上的角可表示为;②终边在轴的非正半轴上的角可表示为;③终边在轴的非负半轴上的角可表示为;④终边在轴的非正半轴上的角可表示为⑤终边在轴上的角可表示为;⑥终边在轴上的角可表示为;⑦终边在坐标轴上的角可表示为。7.终边与角终边对称的角的表示:①终边与角的终边关于原点对称的角可以表示为;②终边与角的终边关于轴对称的角可以表示为;③终边与角的终边关于轴对称的角可以表示为;二、合作探究例1已知下列各个角:,,,.将它们化为另一种度量制下的角分别是多少?解;;;.点评:弧度制与角度制下角的转换是后续学习三角函数常用的知识.要求同学们必须熟练掌握.例2用弧度表示顶点在原点,始边重合于x轴的非负半轴,终边落在阴影部分内的角的集合(不含边界).解:⑴OB的终边上找到一个角-30°=-,而OA的终边上的角75°=.故所求的区域角的集合为:{|2k-<<2k+,k∈Z}.⑵所求的区域角的集合为:{|2k-<<2k+,k∈Z}.点评:对于角的范围的表示一要注意边界角的正确表示,二要注意不等式两边的角的大小,还不能忘记.例3已知扇形的周长为30cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解:设扇形的圆心角为α,半径为r,面积为S,弧长为l,则有l+2r=30∴l=30-2r,从而S=l·r=(30-2r)·r=-r2+15r=-(r-)2+∴当半径r=cm时,扇形面积的最大值是cm2,这时α==2弧度点评:要求扇形的面积的最大值,就应建立扇形面积的函数,而建立函数时,可以将半径r选作自变量.上面解法是利用扇形面积公式建立二次函数,进而求二次函数的最值.此题是扇形周长一定时,求扇形的面积的最大值,利用这种法也可以求当扇形的面积一定其周长的最小值问题.这就是一题多变,你想了吗?三、课堂练习1.已知,则是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角2.是第()象限的角。A.一B.二C.三D.四3.若角与角的终边关于轴对称,则与的关系是___________。4.判断是第几象限的角.5.已知扇形的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积.6.如图,单位圆上一点A从点出发,按逆时针方向作匀速圆周运动,已知点A每秒转过角,,经过2秒钟到达第三象限,经过14秒钟回到原来的位置,求角的大小.四、课后作业1.已知集合,,则().ABCD2.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.2sin1D.sin23.把化成的形式为4.若小于的正角的6倍的终边与轴的正半轴重合,求满足条件的所有角的集合。5.已知扇形的周长为cm,面积为cm2,求扇形圆心角的弧度数.学后反思自我总结知识归纳方法总结错误总结答案与详解三、课堂练习1.C提示:。2.A解析:∵,∴与终边相同,∴的终边在第一象限.3.提示:与关于轴对称,所以。4.解:∵,∴与终边相同,而是第二象限的角,故是第二象限的角.5.解:设扇形的半径为r,弧长为,则有∴扇形的面积6.解:设经过14秒钟A转过了圈,设,由弧长公式及已知条件,得,即,且已知在第三象限,,故,,解得由于,或5,故,或四、课后作业1.D解集合表示第一、二象限和轴上的角及轴非负半轴上的角,由于,所以集合(因为最终结果是找交集的,所以可以用近似值表示),从而借助于坐标系得到,选择D.当然也可以对取值直接找它们的公共区域内的范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版权许可使用合同标的及其范围规定
- 2024年度工业地产项目场地租赁与生产设备配套合同3篇
- 五金交电招投标合同
- 青年住宅楼施工合同协议书
- 徒弟学习手艺合同
- 住宅区垃圾处理施工合同
- 2025版个人借款合同范本
- 社区活动中心瑜伽租赁合同
- 2024年度施工合同合同履约保证金补充协议3篇
- 2024年房屋全款买卖合同格式2篇
- 山东省烟台市2024届高三上学期期末考试英语试题 含解析
- 《汽车专业英语》期末试卷附答案第1套
- 医学细胞生物学(温州医科大学)知到智慧树章节答案
- 《如何培养良好心态》课件
- 龙门吊拆装合同中的质量保修条款(2024版)
- 《中医养生肾》课件
- 2024至2030年中国肉食鹅数据监测研究报告
- 乡镇(街道)和村(社区)应急预案编制管理百问百答
- 中国高血压防治指南(2024年修订版)核心要点解读
- 花道-插花技艺养成学习通超星期末考试答案章节答案2024年
- 工程质量安全手册-住建部编
评论
0/150
提交评论