版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选题1.在平面直角坐标系中,与点P关原点对称的点Q为
,则点P的坐标是()A.
B.
C.
.
2.已知,到坐标轴的距离相等,则x的值为)A.
B.
C.
或
.
或13.如果是任意实数,则点
(
,一定不在()A.第一象限
B.二象限
C.第三象限
.四象限4.平面直角坐标系中,点
a//轴,点C是线
上的一个动点,当线段的度最短时,C的标为()A.
B.
C.
.
5.下列计算正确的是()A.322
B.10
C.32
5
.6.已知
|a
,b2,
,则代数式的为()A.-17B.或7C1或7D.7.下列说法中正确的是()A.使式子x有意义的是>﹣B.是整数的最小整数n是C.正方形的边长为3cm则面积为30cm2
.算3÷×
的结果是38.下列说法中正确的是()A.的方根是
9
B.算术平方根是4的立方根是.64
C.与a相等9.如图所示,数轴上的点A所示的数为,a的值是()A.5
B.5
C.
.10.知点P是ABC内一点,且它到三角形的个顶点距离之和最小,则点eq\o\ac(△,)ABC的费马点(Fermat)已经证明:在三个内角均小于120°eq\o\ac(△,)ABC中当APB=APC=BPC=时P就的马点.若点是长为的腰直角三角形DEF的马点,则+PEPF=()
A.B.
C.6
.11.图,角三角形纸片的两直角边长分别为、,如②方折叠,使点A与点CB重,痕为DE,则BCE与ADE的面积之比为()A.
B.
C.:
.
12.明学了在数轴上表示理数的方法后,进行了练习:首先画数轴,原点为,在数轴上找到表示数2的,后过点A作ABOA,AB1;再以为圆心,OB的长为半径作弧,交数轴正半轴于点P,那么P表的数是()A.B.5
C.2
.二、填题13.一个第三象限的点坐,这个点坐标_.14.知点A在x轴方y轴侧,到x轴距离是,到y轴的距离是,么点的坐标是.15.较大小:______3.填“或)16.A26,.计算:
.a18.图在eq\o\ac(△,Rt)中,,,,是AB的点,过点D作DE垂交BC的延长线于点E则CE的长_______.19.图,在
中,∠C,AB的中垂线DE于,交
于,若AB
,
,则
△
的周长__________.
mm20.图,RtABC,9,6,90折,使A点与的中点D重,折痕为MN,则段
的长为.三、解题21.图,在平面直角坐标中,AC,知
,点在第一象限内,90AB的长线与DC的长线交于点M,与BD交于点N.()OBA的数________()点D坐标.()证:
AM
.22.平面直角坐标系中,知点
m()点M在轴上,求的.()点M在一、三象限的角平分上,求的值23.算:()
(
8
()
|1
12
24.算:
.25.们知道,以,,为边长的三角形是直角三角形,称,,为股数组记为(,,),可以看作2
﹣,,
+1)同时86,也为勾股数,记为8,6,),可以看作3
﹣,,3
+1).类似,依次可以得到第三个勾股数组15,8,).()你根据述勾股数组规律,写出第个勾股数组;()设勾股组中间的数为2(,为数),根据上述规律,请直接写出这组勾股数组.26.图,已知eq\o\ac(△,Rt)中,C,点D是AC上点,点E、点是BC上的点,且CDFCEACFCA.()图1,平BAC,DFC=25°,的度数;()图2,过点作FGAB于G,结求证AGGF
GC.【参考答案】***试卷处理标记,请不要除一选题1D解析:【分析】在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得.【详解】与P关原点对称的点Q为
,点P的标是:故选.
.
【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.2.D解析:【分析】根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案.【详解】由题意,得2-x=3x-4或2-x+(3x-4)=0,解2-x=3x-4得x=
,解2-x+(3x-4)=0得x=1,x的值为
或,故选.【点睛】本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.3.D解析:【分析】根据点P纵坐标一定大于横坐标和各象限的点的坐标进行解答.【详解】解:a
,即点P的坐标一定大于横坐标,又第象限的点的横坐标是正数,纵坐标是负数,第象限的点的坐标一定大于纵坐标,点P一不在第四象限.故选:D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限
(
;第二象限
(
;第三象限
(
;第四象限
(
.4.D解析:【分析】由经过点的线x轴可知点C的坐标与点A的坐标相等,可设C的标(3)根据点到直线垂线段最短,当BCa时点C的横坐标与点B的坐标相等,即可得出答案.【详解】解:如右图所示,
x轴,点C是线上一个动点,点(,)设Cx,),当a时,BC的长度最短,点(,),,点的坐标为(,)故选:.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.5.D解析:【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可【详解】
3
2,选A错误;
,选错;
与不同类二次根式,无法计算,选C错误;
(42=42=2,选正确故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关.6.C解析:【分析】
分别求出a与b的值,再利用解题.【详解】
这一条件判断出、的,进而分情况讨论即可解
,
,
,a
,
或
,故选.【点睛】本题考查了去绝对值和求平方根,正确的确定、的值是答本题的关键.7.B解析:【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【详解】A、使式子x有意义的是x﹣,故此选项错误;B、是整数的最小整数n是,此选项正确;C、正方形的边长为3cm则面积为90cm,故此选项错误;、3×
13
的结果是1,故此选项错误;故选:.【点睛】本题考查了二次根式有意义的条件以及二次根式的乘除运算,正确掌握相关定义是解题的关键;8.C解析:【分析】根据平方根,立方根,算术平方根的定义解答即可.【详解】A.的方根为,故选项错误B.16的术平方根是2
,故选项错误;C.
a
,故选项正确;.的方根是4
,故选项错误;故选:.【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.
9.C解析:【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【详解】解:==12
2
5
,数上点A所表示的数为,=5故选:.【点睛】本题考查了数轴和实数,勾股定理的应用,能读懂图象是解此题的关键.10.解析:【分析】根据题意画出图形,根据勾股定理可得EF,由过点D作DM于,过、分别作MFP就可以得到满足条件的点,易得EM=DM==方程求出PM、、,继而求出PD的即可求解.【详解】解:如图:等腰eq\o\ac(△,)DEF中DE=DF=6
3
,根据勾股定理列
EF
DEDF222
,过点D作DM于,过、F分作=MFP,EPF=FPD=,P就是马费点,EMDMMF=
3
,设=,=,在eq\o\ac(△,)EMP中由勾股定理可得:PM2EM2PE,即x
2
,解得:
x
,
x
(负数舍去),即=,PEPF=
故DP-=6,则PD+PEPF=26=326=
.故选.
【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM的是解题关键.11.解析:【分析】由折叠可得
AD
,AE,根勾股定理可得E,DE的度,即可求面积比.【详解】解:
BC,,AB折叠,
,AD
,AEBC
CE
,CE)
,CE
,AE
254
,AE
AD
,S
BC:ADDE252
,故选:D.【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.12.解析:【分析】根据题意可知
为直角三角形,再利用勾股定理即可求出OB的度从而得出长度,即可选择.【详解】
为直角三角形.
在AOB中,
OA
AB
.根据题意可知
OA,AB=1
,
225.又OB=5,P点示的数为.故选:.【点睛】本题考查数轴和勾股定理,利用勾股定理求出OB的长是解答本题的关键.二、填题13.(−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如(解析:,(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】第象限的角平线上的点的横、纵坐标相等,并且都为负数,只根据特点写横纵坐标相等,并且都为负数的一组数即可,如−1,)故答案为:,(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.14.-43)分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限第二象限中的点横坐标为负数纵坐标为正数所以点A的坐标为(-43)故答案为:解析:-,.【分析】到轴的距离表示点的纵坐标的绝对值;到轴距离表示点的横坐标绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.所以点的坐标(-3)故答案为:-,.【点睛】本题考查点的坐标,利用数形结合思想解题是关键.15.【分析】估算的大小与比较即可【详解】解:∵4<59∴2<<则<3故答案为:<【点睛】本题考查了实数大小比较熟练掌握运算法则是解本题的关
键解析:
【分析】估算5的小,与3比较即可.【详解】解:4<<,<<,则<3,故答案为:.【点睛】本题考查了实数大小比较,熟练掌握运算法则是解本题的关键.16.【分析】利用实数的除法法则计算即可【详解】解∵∴A=答案为:【点睛】本题主要考查了实数的运算熟练掌握实数的除法法则是解题关键解析33【分析】利用实数的除法法则计算即可.【详解】解:A26A=
3623故答案为:
.【点睛】本题主要考查了实数的运算,熟练掌握实数的除法法则是解题关键.17.2a【分析】根据二次根式的除法法则计算再将计算结果化为最简二次根式即可解题【详解】故答案为:【点睛】本题考查二次根式的除法最简二次根式等知识是重要考点难度较易掌握相关知识是解题关键解析:【分析】根据二次根式的除法法则计算,再将计算结果化为最简二次根式即可解题.【详解】b
b5
2b20a5
224a故答案为:
.【点睛】本题考查二次根式的除法、最简二次根式等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.【分析】连接AE设CE=x由线段垂直平分线的性质可知AEBE=+CE在RtACE中利用勾股定理即可求出的长度【详解】解:如图连接设∵点D是线段AB的中点且DE是AB的垂直平分线∴∴解析:
【分析】连接AE,设CE,由线段垂直平分线的性质可知AE==+,在eq\o\ac(△,)ACE中,利用勾股定理即可求出CE的度.【详解】解:如图,连接AE,设CE,点D是线段AB的中点,且DE,DE是的垂直平分线,
BCCE
,在
Rt
中,
AE
2
2
2
,即
,解得
x
.故答案为:
.【点睛】本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并
利用勾股定理求解线段的长度是解题的关键.19.【分析】先根据勾股定理求出BC的长再由线段垂直平分线的性质得出AD=BD即AD+CD=BC再由AC=6即可求出答案【详解】解:△ABC中∠C=90°AB=5AC=3∴BC==4∵DE是线段AB的解析:【分析】先根据勾股定理求出BC的,再由线段垂直平分线的质得出AD=BD,AD+CD=BC,由即求出答案.【详解】解:ABC中,C=90°AB=5,,BC=
5
2=4,DE是段AB的直平分线,AD=BD,,即AD+CD=BC,ACD的周=.故答案为:.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是题的关键.20.【分析】根据题意设BN=x由折叠DN=AN=9-x在利用勾股定理列方程解出x就求出BN的长【详解】D是CB中点BC=6∴BD=3设BN=xAN=9-x由折叠DN=AN=9-x在中解得x=4∴BN解析:【分析】根据题意,设BN=x,折叠DN=AN=9-x,在Rt利用勾股定理列方程解出,就求出BN的.【详解】D是CB中点BC=6设BN=x,,折叠,DN=AN=9-x,在,22DN2,
2
2
,解得x=4.故答案是:.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.
三、解题21.1);2)
D
;()解.【分析】(1)根点A,点B的坐标得OA=OB,而得到等腰直角三角形OAB依计算即;(2)过作DE轴,垂足E,明
即可;(3)通证明,现【详解】
eq\o\ac(△,)ACM
的目标,问题得.()
,OA=OBAOB是腰直角三角形,OBA=45°,故填45°.()
,
OC
.如图,过点D作
DE
轴,垂足为,
.
DCA90CD,BCAECD90
,
EDC
,
DECCOA
,
DEOC,ECOA
,
EC
,
D
.,()明
BEOB
,
DBE
是等腰直角三角形,
45
.
OBA45
,,
ANB90
.
DCA90
,
DNC90
.
ANB
,.
DCA90
,
ACMDCN
.AC,
eq\o\ac(△,≌)ACM
,
AM
.【点睛】本题考查了等腰直角三角形的判定和性质,一线三直角全等模型,坐标与线段的关系,三角形的全等,解答时,能准确找到合适的全等三角形是解题的关.22.1)0.5;2)【分析】()据点在x轴纵坐标为0求解;()据第一三象限的角平分线上的横坐标,纵坐标相等求解.【详解】解:()题得:
2
,解得
0.5
;()题意得
,解得.【点睛】此题考查了点与坐标的对应关系,坐标轴上的点的特征,第一、三象限的角平分线上的点的特征.23.1);()【分析】()用乘法配律使得计算简便;()数的混运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:()
18
8
()
|1
12
33【点睛】本题考查有理数的混合运算和实数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式
【点睛】本题考查了实数的运算,熟
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全应急响应-第3篇-洞察分析
- 网络学习社区建设-洞察分析
- 数字艺术教育创新-洞察分析
- 水陆联运技术集成-洞察分析
- 药物作用靶点验证技术-洞察分析
- 营养素与环境关系研究-洞察分析
- 网络艺术市场分析-洞察分析
- 新能源车辆在物流业的应用-洞察分析
- 从社交平台到市场爆款的地铁文创产品设计秘诀
- 办公空间绿色改造的实践与思考
- 【政治】期末复习测试卷-2024-2025学年统编版道德与法治七年级上册
- 王维《山居秋暝》诗歌鉴赏与意境探究教学设计
- 社区妇联2024工作计划
- 华电笔试题库
- 跨学科实践活动7+垃圾的分类与回收利用(教学设计)九年级化学下册同步高效课堂(人教版2024)
- 医学教材 产科快速康复专家共识学习资料
- 政治理论应知应会100题
- 中建深基坑工程土方开挖专项施工方案
- 2024年心理咨询师题库含答案【达标题】
- 北京市西城区2023-2024学年五年级上学期语文期末试卷(含答案)
- 2024年世界职业院校技能大赛中职组“水利工程制图与应用组”赛项考试题库(含答案)
评论
0/150
提交评论