下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市柳林县第三中学2021年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,,,则与的夹角是(
)A、30
B、60
C、120
D、150参考答案:C略2.函数y=的图象可能是()A. B. C. D.参考答案:B【考点】3O:函数的图象.【分析】当x>0时,,当x<0时,,作出函数图象为B.【解答】解:函数y=的定义域为(﹣∞,0)∪(0,+∞)关于原点对称.当x>0时,,当x<0时,,此时函数图象与当x>0时函数的图象关于原点对称.故选B3.函数恒过定点(
)A.
B.
C.
D.参考答案:B略4.△ABC的三边满足a2+b2=c2-ab,则此三角形的最大的内角为A.150°
B.135°C.120°
D.60°参考答案:A5.奇函数f(x)当x∈(0,+∞)时的解析式为f(x)=x2﹣x+2,则f(﹣1)=()A.﹣2 B.2 C.4 D.﹣4参考答案:A【考点】函数的值.
【专题】计算题;函数的性质及应用.【分析】由题意求f(1),再求奇偶性求f(﹣1).【解答】解:由题意得,f(1)=12﹣1+2=2,故f(﹣1)=﹣f(1)=﹣2;故选:A.【点评】本题考查了函数的性质的应用.6.从2004名学生中抽取50名组成参观团,若采用下面的方法选取,先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率是()A.不全相等 B.均不相等C.都相等,且为
D.都相等,且为参考答案:C7.化简的结果是()A. B. C. D.参考答案:B=|cos160°|=-cos160°.故答案为:B。8.已知函数f(x)=,其定义域是[﹣8,﹣4),则下列说法正确的是(
)A.f(x)有最大值,无最小值 B.f(x)有最大值,最小值C.f(x)有最大值,无最小值 D.f(x)有最大值2,最小值参考答案:A【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】将f(x)化为2+,判断在[﹣8,﹣4)的单调性,即可得到最值.【解答】解:函数f(x)==2+即有f(x)在[﹣8,﹣4)递减,则x=﹣8处取得最大值,且为,由x=﹣4取不到,即最小值取不到.故选A.【点评】本题考查函数的最值的求法,注意运用单调性,考查运算能力,属于基础题和易错题.9.设全集,则图中阴影部分表示的集合为(
)
参考答案:B10.已知两条直线y=ax﹣2和y=(a+2)x+1互相垂直,则a等于()A.2 B.1 C.0 D.﹣1参考答案:D【考点】IA:两条直线垂直与倾斜角、斜率的关系.【分析】两直线ax+by+c=0与mx+ny+d=0垂直?am+bn=0解之即可.【解答】解:由y=ax﹣2,y=(a+2)x+1得ax﹣y﹣2=0,(a+2)x﹣y+1=0因为直线y=ax﹣2和y=(a+2)x+1互相垂直,所以a(a+2)+1=0,解得a=﹣1.故选D.二、填空题:本大题共7小题,每小题4分,共28分11.下列命题中,正确的命题个数是
▲
.①②③④⑤;⑥参考答案:4略12.某方程在区间D=(2,4)内有一无理根,若用二分法求此根的近似值,且使所得近似值的精确度达到0.1,则应将D分_____________次。参考答案:513.若A(x,-1),B(1,3),C(2,5)共线,则x的值为________.参考答案:-1略14.若,则与具有相同终边的最小正角为_________。
参考答案:略15.若函数是奇函数,则
参考答案:略16.计算:
参考答案:417.集合A={3,2a},B={a,b},若AB={2},则AB=
▲.参考答案:{1,2,3}三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=,是BC中点,E是AA1中点.(Ⅰ)求三棱柱ABC﹣A1B1C1的体积;(Ⅱ)求证:AD⊥BC1;(Ⅲ)求证:DE∥面A1C1B.参考答案:考点: 棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题: 综合题;空间位置关系与距离.分析: (Ⅰ)利用体积公式,可求三棱柱ABC﹣A1B1C1的体积;(Ⅱ)证明面ABC⊥面BC1,可得AD⊥面BC1,即可证明AD⊥BC1;(Ⅲ)取CC1中点F,连结DF,EF,证明面DEF∥面,即可证明DE∥面A1C1B.解答: (Ⅰ)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(Ⅱ)证明:∵,∴△ABC为等腰三角形∵D为BC中点,∴AD⊥BC﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∵ABC﹣A1B1C1为直棱柱,∴面ABC⊥面BC1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∵面ABC∩面BC1=BC,AD面ABC,∴AD⊥面BC1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)∴AD⊥BC1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅲ)证明:取CC1中点F,连结DF,EF,﹣﹣﹣﹣﹣﹣﹣﹣(8分)∵D,E,F分别为BC,CC1,AA1的中点∴EF∥A1C1,DF∥BC1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∵A1C1∩BC1=C1,DF∩EF=F∴面DEF∥面﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)∵DE面DEF∴DE∥面A1C1B.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评: 本题考查体积的计算,考查线面垂直,线面平行,正确运用线面垂直,线面平行的判定定理是关键.19.(12分)已知函数y=f(x)满足:f(x+1)=x2+x+1.(1)求f(x)的解析式;(2)求f(x)在区间上的最大值与最小值.参考答案:考点: 二次函数在闭区间上的最值;函数解析式的求解及常用方法.专题: 函数的性质及应用.分析: (1)利用换元法直接求出结果(2)首先不函数变形成顶点式,进一步利用对称轴和定义域的关系求的结果.解答: (1)由f(x+1)=(x+1)2﹣x=(x+1)2﹣(x+1)﹣1得f(x)=x2﹣x+1(2)∵x∈,∴f(x)在上是减函数,在上是增函数又f(2)=3>f(0)=1∴.点评: 本题考查的知识要点:用换元法求函数的解析式,根据二次函数的对称轴与定义域的关系求最值.20.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)参考答案:【考点】函数模型的选择与应用.【分析】(1)服装的实际出厂单价为P,应按x≤100和x>100两类分别计算,故函数P=f(x)应为分段函数;(2)由(1)可求出销售商一次订购了450件服装时的出厂价P,450(P﹣40)即为所求;也可列出当销售商一次订购x件服装时,该服装厂获得的利润函数,再求x=500时的函数值【解答】解:(1)当0<x≤100时,P=60,当100<x≤500时,P=60﹣0.02(x﹣100)=62﹣x,所以P=f(x)=(x∈N);(2)设销售商的一次订购量为x件时,工厂获得的利润为L元,则L=(P﹣40)x=,此函数在[0,500]上是增函数,故当x=500时,函数取到最大值,因此,当销售商一次订购了500件服装时,该厂获利的利润是6000元21.(本小题满分12分)
已知函数为偶函数,且.
(1)求的值,并确定的解析式.
(2)若在区间上为增函数,求实数的取
值范围.
参考答案:(1)∵是偶函数,∴为偶函数。又∵,
即,整理得,
∴,根据二次函数图象可解得.
∵,∴或.当时,,为奇数(舍),
当时,,为偶数,∴,此时
(2)由(1)知,,设,
则是由、复合而成的.
当时,为减函数.要使在上为增函数,
只需在上为减函数,且,
故有,即,故集合为.
当时,为增函数.要使在上为增函数,
只需在上为增函数,且,
故有,解得,故.综上,的取值范围为.22.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.参考答案:【考点】直线的截距式方程.【专题】计算题.【分析】设直线l的横截距为a,则纵截距为(6﹣a),写出直线l的截距式方程,把(1,2)代入即可求出a的值,把a的值代入直线l的方程中,经过检验得到满足题意的直线l的方程.【解答】解:设直线l的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州西亚斯学院《羽毛球教学与训练》2023-2024学年第一学期期末试卷
- 2024年度卫星导航系统研发内部承包合同协议
- 小学生守时守纪承诺书
- 模板工程分包合同示例
- 走读生进步保证书
- 景观亮化设计招标
- 分包合同纠纷案件评析
- 项目执行保证书
- 分家财产分割协议样本
- 郑州西亚斯学院《创业基础》2023-2024学年第一学期期末试卷
- 护理投诉及纠纷的应急预案
- 义务教育信息科技课程标准(2022年版)解读
- 医院数据隐私泄露预案
- 人教版小学数学六年级上册《百分数》单元作业设计
- 多用户预编码
- 初三家长培训
- (高清版)DZT 0282-2015 水文地质调查规范(1:50000)
- 空调维保项目进度保障计划
- 污水管网施工-施工现场总平面布置(纯方案-)
- 《工业管理与一般管理》
- T-CASA 0005-2022 超前预警电气火灾监控系统技术标准
评论
0/150
提交评论