下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市乡宁县西坡镇西坡中学2021-2022学年高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数,若不等式恰有两个整数解,则实数a的取值范围是(
)A.
B.
C.
D.参考答案:A函数的定义域为,不等式,即,两边除以,则,注意到直线:恒过定点,函数图象上恰有两个横坐标为整数的点落在直线的上方,由图象可知,这两个点分别为,所以直线的斜率的取值范围为,即.故选:A点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2.将函数的图形按向量平移后得到函数的图形,满足和,则向量的一个可能值是(
)
A.
B.
C.
D.参考答案:D3.若集合,,则集合不可能是(
)A.
B.
C.
D.参考答案:C4.已知a为常数,函数有两个极值点x1,x2(x1<x2),则 ()A、 B、
C、 D、参考答案:D5.曲线:如何变换得到曲线:(
)A.向左平移个单位
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位参考答案:B分析:先化为正弦型函数,根据图象平移法则即可得出结论.详解:曲线C1:=所以曲线:图象向右平移个单位即可得到曲线:.故答案为:B
6.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为(A) (B)(C) (D)参考答案:D分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.
7.设函数f(x)=cosx+bsinx(b为常数),则“b=0”是“f(x)为偶函数”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:C【分析】根据定义域为R的函数为偶函数等价于进行判断.【详解】时,,为偶函数;为偶函数时,对任意的恒成立,,得对任意恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.8.已知是定义在上的偶函数,且在上为增函数,则的解集为(
)A. B.
C.
D.参考答案:B∵f(x)是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选B9.函数的零点有A.0
B.1
C.2
D.3参考答案:C10.实数的最大值为(
)
A.18 B.19 C.20 D.21参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.平面向量与的夹角为120°,=(2,0),||=1,则|﹣2|=
.参考答案:2考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意可得=||?||?cos120°的值,再根据|﹣2|=,计算求得结果.解答: 解:由题意可得=||?||?cos120°=2×1×(﹣)=﹣1,∴|﹣2|====2,故答案为:.点评:本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.12.已知关于x的不等式ax2+bx+c>0的解集为{x|﹣2<x<3},则关于x的不等式cx2+bx+a<0的解集为.参考答案:{x|﹣<x<}【考点】一元二次不等式的解法.【分析】由于关于x的一元二次不等式ax2+bx+c>0的解集为{x|﹣2<x<3},可知a<0,且﹣2,3是一元二次方程ax2+bx+c=0的两个实数根,利用根与系数的关系可得=﹣1,=﹣6,a<0.代入不等式cx2+bx+a<0化为﹣6x2﹣x+1>0,即可得出.【解答】解:∵关于x的一元二次不等式ax2+bx+c>0的解集为{x|﹣2<x<3},∴a<0,且﹣2,3是一元二次方程ax2+bx+c=0的两个实数根,∴=﹣(﹣2+3)=﹣1,=﹣6,a<0.∴不等式cx2+bx+a<0化为﹣6x2﹣x+1>0,化为6x2+x﹣1<0,解得﹣<x<.因此不等式的解集为{x|﹣<x<}.故答案为:{x|﹣<x<}.【点评】本题考查一元二次不等式的解法、一元二次方程的根与系数的关系,考查了推理能力和实践能力,属于基础题.13.
复数
;参考答案:
14.已知函数,若在区间上的最大值、最小值分别为,则=
.参考答案:4略15.在等差数列{an}中,a7=8,前7项和S7=42,则其公差是.参考答案:【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及前n项和公式列出方程组,能求出公差.【解答】解:∵在等差数列{an}中,a7=8,前7项和S7=42,∴,解得a1=4,d=.故答案为:.16.已知圆与直线及都相切,圆心在直线上,则圆的标准方程为
.参考答案:17.已知函数(其中)经过不等式组所表示的平面区域,则实数的取值范围是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系中,圆C的方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线l的极坐标方程为ρcosθ+ρsinθ=m(m∈R).(I)当m=3时,判断直线l与C的位置关系;(Ⅱ)当C上有且只有一点到直线l的距离等于时,求C上到直线l距离为2的点的坐标.参考答案:【考点】参数方程化成普通方程.【分析】(I)将曲线方程化成直角坐标方程,计算圆心到直线的距离与圆的半径比较大小得出结论;(II)由题意可知直线与圆相离,且圆心到直线l的距离为2,故到直线l的距离等于2的点在过圆心且与直线l平行的直线上,求出此直线的参数方程代入圆的方程求出该点对应的参数,得出该点的坐标.【解答】解:(I)圆C的普通方程为(x﹣1)2+(y﹣1)2=2,∴圆心坐标为(1,1),半径r=.m=3时,直线l的直角坐标方程为x+y﹣3=0.∴圆心C到直线l的距离d==<r.∴直线l与圆C相交.(II)直线l的普通方程为x+y﹣m=0.∵C上有且只有一点到直线l的距离等于,∴直线l与圆C相离,且圆心到直线的距离为.∴圆C上到直线l的距离等于2的点在过圆心C(1,1)且与直线l平行的直线上.∴过圆心C(1,1)且与直线l平行的直线的参数方程为:(t为参数).将:(t为参数)代入圆C的普通方程得t2=2,∴t1=,t2=﹣.当t=时,,当t=﹣时,.∴C上到直线l距离为2的点的坐标为(0,2),(2,0).【点评】本题考查了参数方程,极坐标方程与普通方程的转化,直线与圆的位置关系,属于中档题.19.已知椭圆:的右焦点,过原点和轴不重合的直线与椭圆相交于,两点,且,最小值为.(Ⅰ)求椭圆的方程;(Ⅱ)若圆:的切线与椭圆相交于,两点,当,两点横坐标不相等时,问:与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.参考答案:解:(Ⅰ)设AB()F(c,0)则-----------------------------------------1分所以有椭圆E的方程为-----------------5分(Ⅱ)由题设条件可知直线的斜率存在,设直线L的方程为y=kx+mL与圆相切,∴∴-----------------7分L的方程为y=kx+m代入中得:令,①
②③--------------------10分∴------------------------------------------------------12分略20.(本题满分12分)在平面直角坐标系中,直线的参数方程为:(为参数),它与曲线交于,两点.(Ⅰ)求的长;(Ⅱ)在以为极点,轴的正半轴为极轴建立极坐标系,设点的极坐标为,求点到线段中点的距离.参考答案:(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得设,对应的参数分别为,则.
所以.(Ⅱ)易得点在平面直角坐标系下的坐标为,根据中点坐标的性质可得中点对应的参数为.所以由的几何意义可得点到的距离为.21.(本小题满分12分)已知向量,其中为锐角.的图象的两个相邻对称中心的距离为,且非常好取得最大值3.(I)求的解析式;(II)将的图象先向下平移1个单位,再向左平移个单位得的图象,若为奇函数,求的最小值.参考答案:22.如图,在直三棱柱ABC﹣A1B1C1中,AC=1,BC=2,AC⊥BC,D,E,F分别为棱AA1,A1B1,AC的中点.(Ⅰ)求证:EF∥平面BCC1B1;(Ⅱ)若异面直线AA1与EF所成角为30°时,求三棱锥C1﹣DCB的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(Ⅰ)要证EF∥平面BCC1B1,可证EF所在平面平行于平面BCC1B1,取AB的中点O,连接FO,EO,由棱柱的性质可得FO∥BC,EO∥BB1,再由面面平行的判定得到平面EFO∥平面BCC1B1,则答案得到证明;(Ⅱ)由(Ⅰ)知∠FEO异面直线AA1与EF所成角,得到∠FEO=30°,进一步得到BC⊥平面ACC1A1,再由已知求出EO的长度,把三棱锥C1﹣DCB的体积转化为B﹣CDC1的体积求解.【解答】(Ⅰ)证明:如图,取AB的中点O,连接FO,EO,∵E,F分别为棱A1B1,AC的中点,∴FO∥BC,EO∥BB1,FO∩EO=O,BC∩BB1=B,FO,EO?平面EFO,BC,BB1?平面BCC1B1,∴平面EFO∥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融机构贷款合同模板
- 舞台桁架搭建协议
- 专业合同种植技术服务样本
- 招标文件标准范例
- 个人创业非固定员工保证书
- 保证书格式典范
- 广告服务合同的履行标准
- 嫖娼问题自我反省书
- 买卖合同取消协议书
- 防雷工程合作协议范本
- 2024年华润燃气集团招聘笔试参考题库含答案解析
- 岸基维修协议
- (完整版)翻译技巧翻译方法
- 中医护理技术操作平衡火罐技术操作流程与考核评分标准
- 2023年10月上海社会科学院工作人员招考聘用笔试历年难易错点考题荟萃附带答案详解
- 《法理学》(第三版教材)形成性考核作业1234答案
- 植物的抗热性
- 《人际关系与沟通技巧》(第3版)-教学大纲
- 2023年中医养生之药膳食疗考试试题
- 某土石方施工工程主要施工机械设备表
- 硅PU(塑料面层)检验批质量验收记录表
评论
0/150
提交评论