版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BCHCodesOUTLINE[1]Finitefields[2]Minimalpolynomials[3]CyclicHammingcodes[4]BCHcodes[5]Decoding2error-correctingBCHcodesBCHCodes[1]Finitefields1.Irreduciblepolynomialf(x)K[x],f(x)hasnoproperdivisorsinK[x] Eg. f(x)=1+x+x2isirreducible f(x)=1+x+x2+x3=(1+x)(1+x2)isnotirreducible
f(x)=1+x+x4isirreducibleBCHCodes2.Primitivepolynomialf(x)isirreducibleofdegreen>1f(x)isnotadivisorof1+xmforanym<2n-1 Eg.f(x)=1+x+x2isnotafactorof1+xmform<3sof(x)isaprimitivepolynomialf(x)=1+x+x2+x3+x4isirreduciblebut1+x5=(1+x)(1+x+x2+x3+x4)andm=5<24-1=15sof(x)isnotaprimitivepolynomialBCHCodes3.DefinitionofKn[x]
ThesetofallpolynomialsinK[x]havingdegreelessthannEachwordinKncorrespondstoapolynomialinKn[x]MultiplicationinKnmoduloh(x),withirreducibleh(x)ofdegreenIfweusemultiplicationmoduloareducibleh(x),say,1+x4todefinemultiplicationofwordsinK4,however:
(0101)(0101)(x+x3)(x+x3) =x2+x6 =x2+x2(mod1+x4) =0
0000(K4-{0000}isnotclosedundermultiplication.)
BCHCodes4.DefinitionofField(Kn,+,x)(Kn,+)isanabeliangroupwithidentitydenoted0Theoperationxisassociativeax(bxc)=(axb)xcThereisamultiplicativeidentitydenoted1,with101xa=ax1=a,aKnTheoperationxisdistributiveover+ax(b+c)=(axb)+(axc)Itiscommunicativeaxb=bxa,a,bKnAllnon-zeroelementshavemultiplicativeinversesGaloisFields:GF(2r)Foreveryprimepowerorderpm,thereisauniquefinitefieldoforderpmDenotedbyGF(pm)BCHCodesExampleLetusconsidertheconstructionofGF(23)usingtheprimitivepolynomialh(x)=1+x+x3todefinemultiplication.Wedothisbycomputingximodh(x): word ximodh(x) 100 1 010 x 001 x2 110 x31+x 011 x4x+x2 111 x51+x+x2 101 x61+x2BCHCodes5.UseaprimitivepolynomialtoconstructGF(2n)LetKnrepresentthewordcorrespondingtoxmodh(x)i
ximodh(x)m1form<2n-1sinceh(x)dosenotdivide1+xmform<2n-1Sincej=iforjiiffi=j-iij-i=1Kn\{0}={i|i=0,1,…,2n-2}BCHCodes6.
GF(2r)isprimitiveisprimitiveifm1for1m<2r-1Inotherwords,everynon-zerowordinGF(2r)canbeexpressedasapowerofExample
ConstructGF(24)usingtheprimitivepolynomialh(x)=1+x+x4.Writeeveryvectorasapowerof
xmodh(x)(seeTable5.1below) Notethat15=1. (0110)(1101)=5.7=12=1111BCHCodesTable1ConstructionofGF(24)usingh(x)=1+x+x4wordpolynomialinxmodh(x)powerof00000-100010=10100x0010x220001x3311001+x=x440110x+x2=x550011x2+x3=x66BCHCodesTable1(continue)ConstructionofGF(24)usingh(x)=1+x+x4wordpolynomialinxmodh(x)powerof11011+x+x3=x7710101+x2=x880101x+x3=x9911101+x+x2=x10100111x+x2+x3=x111111111+x+x2+x3=x121210111+x2+x3=x131310011+x3=x1414BCHCodes[2]Minimalpolynomials
1.Rootofapolynomial:anelementofF=GF(2r),p(x)F[x]isarootofapolynomialp(x)iffp()=02.OrderofThesmallestpositiveintegermsuchthatm=1inGF(2r)isaprimitiveelementifithasorder2r-1BCHCodes3.MinimalpolynomialofThepolynomialinK[x]ofsmallestdegreehavingasrootDenotedbym(x)m(x)isirreducibleoverKIff(x)isanypolynomialoverKsuchthatf()=0,thenm(x)isafactoroff(x)m(x)isuniquem(x)isafactorofBCHCodesExampleLetp(x)=1+x3+x4,andletbetheprimitiveelementinGF(24)constructedusingh(x)=1+x+x4(seeTable5.1): p()=1+3+4=1000+0001+1100=0101=9isnotarootofp(x).However p(7)=1+(7)3+(7)4=1+21+28=1+6+13=1000+0011+1011=0000=07isarootofp(x).BCHCodes4.FindingtheminimalpolynomialofReducetofindalinearcombinationofthevectors{1,,2,…,r},whichsumsto0Anysetofr+1vectorsinKrisdependent,suchasolutionexistsRepresentm(x)bymi(x)where=Ieg.
Findthem(x),=3,GF(24)constructedusingh(x)=1+x+x4BCHCodesUsefulfacts:f(x)2=f(x2)
Iff()=0,thenf(2)=(f())2=0Ifisarootoff(x),soare,2,4,…,Thedegreeofm(x)is|{,2,4,…,}|BCHCodesExampleFindthem(x),=3,GF(24)constructedusingh(x)=1+x+x4Letm(x)=m3(x)=a0+a1x+a2x2+a3x3+a4x4thenwemustfindthevaluefora0,a1,…,a4{0,1}
m()=0=a01+a1+a22+a33+a44 =a00+a13+a26+a39+a412 0000=a0(1000)+a1(0001)+a2(0011)+a3(0101)+a4(1111)
a0=a1=a2=a3=a4=1and
m(x)=1+x+x2+x3+x4BCHCodesExampleLet
m5(x)betheminimalpolynomialsof=5,5GF(24) Since{,2,4,8}={5,10},therootsofm5(x)are5and10whichmeansthatdegree(m5(x))=2.Thusm5(x)=a0+a1x+a2x2: 0=a0+a15+a210
=a0(1000)+a1(0110)+a2(1110) Thusa0=a1=a2=1andm5(x)=1+x+x2BCHCodesTable2:MinimalpolynomialsinGF(24)constructedusing1+x+x4ElementofGF(24)Minimalpolynomial01,2,4,83,6,9,125,107,11,13,14x1+x1+x+x41+x+x2+x3+x41+x+x21+x3+x4BCHCodes[3]CyclicHammingcodes1.ParitycheckmatrixTheparitycheckmatrixofaHammingcodeoflengthn=2r-1hasitsrowsall2r-1nonzerowordsoflengthrisaprimitiveelementof GF(2r)Histheparitycheckma- trixofaHammingcodeof lengthn=2r-1BCHCodes2.GeneratorpolynomialForanyreceivedwordw=w0w1…wn-1 wH=w0+w1+…+wn-1n-1w()wisacodewordiffisarootofw(x)m(x)isitsgeneratorpolynomialTheorem5.3.1
AprimitivepolynomialofdegreeristhegeneratorpolynomialofacyclicHammingcodeoflength2r-1BCHCodesExample: Letr=3,son=23-1=7.Usep(x)=1+x+x3toconstruct
GF(23),and010astheprimitiveelement.Recallthati
ximodp(x).ThereforeaparitycheckmatrixforaHammingcodeoflength7isBCHCodes3.DecodingthecyclicHammingcodew(x)=c(x)+e(x),wherec(x)isacodeword,e(x)istheerrorw()=e()ehasweight1,e()=j,jisthepositionofthe1inec(x)=w(x)+xjBCHCodesExample: SupposeGF(23)wasconstructedusing1+x+x3.m1(x)=1+x+x3isthegeneratorforacyclicHammingcodeoflength7.Suppose w(x)=1+x+x3+x6isreceived.Then w()=1+2+3+6 =100+001+110+101 =110 =3
e(x)=x3andc(x)=w(x)+x3=1+x2+x6
BCHCodes[4]BCHcodes1.BCH:Bose-Chaudhuri-HocquenghamAdmitarelativelyeasydecodingschemeTheclassofBCHcodesisquiteextensiveForanypositiveintegersrandtwitht2r-1-1,thereisaBCHcodesoflengthn=2r-1whichist-errorcorrectingandhasdimensionkn-rtBCHCodes2.
Paritycheckmatrixforthe2error-correctingBCHThe2error-correctingBCHcodesoflength2r-1isthecycliclinearcodes,generatedbyg(x)=,r4Thegeneratorpolynomial:g(x)=m1(x)m3(x)Degree(g(x))=2r,thecodehasdimensionn-2r=2r-1-2rBCHCodesExample:
isaprimitiveelementinGF(24)constructedwithp(x)=1+x+x4.Wehavethatm1(x)=1+x+x4andm3(x)=1+x+x2+x3+x4.Therefore g(x)=m1(x)m3(x)=1+x4+x6+x7+x8 isthegeneratorfora2error-correctingBCHcodeoflength15BCHCodes3.TheparitycheckmatrixofC15(distanced=5)
(Table3)BCHCodes[5]Decoding2error-correctingBCHcodes1.Errorlocatorpolynomial
w(x):receivedword
syndromewH=[w(),w(3)]=[s1,s3]Histheparitycheckmatrixforthe(2r-1,2r-2r-1,5)2error-correctingBCHcodewithgeneratorg(x)=m1(x)m3(x)wH=0ifnoerrorsoccurredIfoneerroroccurred,theerrorpolynomiale(x)=xi wH=eH=[e(),e(3)]=[i,3i]=[s1,s3],BCHCodesIftwoerrorsoccurred,sayinpositionsiandj,ij,e(x)=xi+xj,wH=eH=[e(),e(3)]=[i+j,3i+3j]=[s1,s3]Theerrorlocatorpolynomial:BCHCodesExample: Letww(x)beareceivedwordwithsyndromess1=0111=w()ands3=1010=w(3),wherewwasencodedusingC15.FromTable5.1wehavethats111ands38.Then Weformthepolynomialx2+11x+2andfindthatithasroots4and13.Thereforewecandecidethatthemostlikelyerrorsoccurredinpositions4and13,e(x)=x4+x13,themostlikelyerrorpatternis 0000100000000010BCHCodes2.DecodingalgorithmofBCHcodesCalculatethesyndromewH=[s1,s3]=[w(),w(3)]Ifs1=s3=0,noerrorsoccurredIfs1=0ands30,askforretransmissionIf(s1)3=s3,asingleerroratpositioni,wheres1=iFromthequadraticequation: (*)Ifequation(*)hastwodistinctrootsiandj,correcterrorsatpositionsiandjIfequation(*)doesnothavetwodistinctrootsinGF(2r),concludethatatleastthreeerrorsoccurredBCHCodesExample:
AssumewisreceivedandthesyndromeiswH=01111010[11,8].Now Inthiscaseequation(*)isx2+11x+2=0whichhasroots4and13.Correcterrorinpositionsi=4andj=13.Example:
AssumethesyndromeiswH=[w(),w(3)]=[3,9].Then(s1)3=(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年塔吊设备购置与安装工程合同2篇
- 2024版石子买卖合同协议书2篇
- 2024年度投标专员招标项目合同变更及补充合同3篇
- 2024年度食品加工公司食材采购合同3篇
- 2024年度工程验收评估合同3篇
- 2024年度工程环保与节能改造合同
- 卫生监管城镇改善行动方案例文(3篇)
- 企业环境评级工作方案(2篇)
- 2024年广告部业务工作计划样本(二篇)
- 机电科电缆管理人员安全生产责任制模版(3篇)
- 校园眼镜店 项目招商引资方案
- 高中语文统编版(部编版)必修 上册第二单元4《喜看稻菽千重浪》《心有一团火 温暖中人心》《“探界者”钟扬》群文阅读
- HACCP计划年度评审报告
- 中职语文教案:高尔基(节选)教案
- 驾驶服务外包投标方案(完整版)
- 大学课件-机电传动控制(完整)
- 2023-2024学年山东省德州市九年级上学期期末化学质量检测试题(含答案)
- 童年试题附答案
- 端午节食品购销合同
- 江西旅游经济发展调查报告
- 钢筋滚丝机安全操作规程
评论
0/150
提交评论