版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章时变电磁场大理大学工程学院罗凌霄编修1大理大学罗凌霄编修2§6-1传导电流、运流电流和位移电流§6-2全电流定理
§6-3电磁感应定律§6-4麦克斯韦电磁场方程组
§6-5时变电磁场中不同媒质交界面的边界条件、解的唯一性定理§6-6电磁场能量、坡印廷矢量及能量流§6-7电磁动态位及其微分方程第六章时变电磁场本章所研究的对象,为时变电磁场。场中各物理量不仅是空间坐标的函数,而且也是时间的函数。本章将要研究统一的电磁场同时存在的两个方面——随时间变动的电场与随时间变动的磁场。大理大学罗凌霄编修3
1.传导电流传导电流是由自由电荷在导电媒质中作有规则的运动而形成的电流。§6-1传导电流、运流电流和位移电流传导电流服从于欧姆定律。2.运流电流体分布的电荷在空间中迁移形成的电流叫做运流电流。运流电流将不服从于欧姆定律。设无阻力空间某微小区域内,存有以速度
运动的电荷体密度ρ,在此空间作一无限小六面体。图6-1空间无限小六面体(6-1)大理大学罗凌霄编修4dt时间内穿过微小侧面积dS的电量为微小面元dS上任一点的电流密度为考虑到运流电流的方向沿正电荷运动方向,故空间任一点的运流电流密度则穿过的电流为(6-2)(6-3)(6-4)(6-5)需要注意的是,这里的是任一点处的总的电荷密度,是这些电荷的整体移动速度。大理大学罗凌霄编修5可以证明,如果把看做导体中载流子的电荷密度,看做载流子的漂移速度,那么也等于传导电流密度。当有几种载流子并存时,传导电流密度可以表示为这个规律无论是在有非电性场处(电源内部)还是无非电性场处(电源外部)都是成立的。其中是第i种载流子的电荷密度,是第i种载流子的漂移速度。大理大学罗凌霄编修6
3.极化电流处于电介质中的电场,在其变动过程中,电介质的极化强度将发生变化,从而引起电偶极子正、负电荷的振荡,于是会形成一种电流,这种电流叫做极化电流。极化电流由束缚电荷的振荡形成,而非自由电荷的运动形成。由于这种电流是束缚电荷发生微观位移的结果,因而称之为位移电流。可以证明,极化电流密度。可见,只要极化强度随时间变化,就会有极化电流。极化电流也具有磁效应。极化电流概念以及极化电流密度公式是由麦克斯韦建立的,它是位移电流的一部分。大理大学罗凌霄编修4.真空位移电流图7-18
电路中含有电容,导致传导电流不连续在平行板电容器极板附近选取一个闭合路径L,以此回路为边线作两个曲面S1和S2,S1和导线相交,S2和导线不相交。假设安培环路定理在非稳恒情形仍然成立,则对于S1面有导线通过对于S2面没有导线通过,就没有电流通过,因此对于同一个闭合路径,由于选择的曲面不同,积分导致了不同的结果,出现了矛盾。所以安培环路定理在非稳恒情形不成立。
S1S2L+q-qRI7大理大学罗凌霄编修图7-18
电路中含有电容,导致传导电流不连续麦克斯韦认为,如果能够给传导电流加一点东西,构成新的电流,使从左向右流过曲面S1和S2的这种新的电流相等,用这种新的电流代替安培环路定理中的电流,那么安培环路定理就发展为在非稳恒情形仍然成立的规律。从左向右流过曲面S1和S2的这种新的电流相等,则这种新的电流流出闭合曲面的代数和等于零,所以它的电流线是闭合的,故而这种新的电流叫做连续(电)流。麦克斯韦成功地构造了连续流,并且后来的实验证明,经他修正的安培环路定理的确是普遍成立的规律。这是麦克斯韦最伟大的学术成就。S1S2L+q-qRI8大理大学罗凌霄编修9图6-2电源以传导电流形式给导体供电考虑如图6-2所示的两个导体,其间具有电容,现把它们连接到带有开关的直流电源上。在开关闭合的瞬间,电源将向两导体电容系统充电,导体所带的下面来考虑如何构造连续流:自由电量q系由电源以传导电流的形式供给。根据电荷守恒定律(麦克斯韦认为这个规律是可靠的),流入闭合曲面S内的传导电流等于导体上自由电量随时间的增加率,即大理大学罗凌霄编修10为了构造连续流,麦克斯韦假定,高斯定理在一般情形依然成立。所以,(6-7)(6-6)(6-7)式两边对时间求导数,得(6-7*)由(6-6)和(6-7*)式,得大理大学罗凌霄编修11可见,和构成连续流。叫做位移电流密度,用表示。(6-9)(6-8)由于,所以位移电流密度其中就是极化电流密度。故大理大学罗凌霄编修12(6-10)电介质内可以有极化电流,导体内也可以有极化电流,但真空中没有极化电流。叫做真空位移电流密度(或本底极化电流密度)。真空位移电流和极化电流统称为位移电流。图6-2电源以传导电流形式给导体供电在图(6-2)所示的情况下,传导电流和位移电流构成连续流。真空位移电流同样显示出磁效应。大理大学罗凌霄编修13例6-1
空间某点的电位移矢量依照的规律变化。求该点的位移电流密度表达式。
解按位移电流密度,故空间任一点的位移电流密度为
例6-2雷云放电以前,与地面感应电荷形成一均匀电场,设此均匀电场的电场强度为5000V/cm,若雷云放电时间为1μs,求放电时此区域内位移电流密度之值。解由于雷云放电时间为1μs,故电场强度(由5000V/cm降为零)的变化率的绝对值大理大学罗凌霄编修14例6-3
点电荷q沿半径为R的圆周以角速度ω转动。写出其在圆心处位移电流密表达式。
解此点电荷转动过程中,其在圆心所产生的电位移矢量为图6-4例6-3图式中:
为随时间变化的矢量。
的模不变,其方向随时间而变。由位移电流密度表达式,得其中为圆的切向单位矢量,指向角度增大的一侧。大理大学罗凌霄编修15§6-2全电流定理在空间绕任意导体作任意闭合曲面S,此时若有电源以传导电流形式向该导体充电,同时有自由体电荷进入该闭合曲面,那么根据电荷守恒定律,穿入曲面S的传导电流与运流电流应等于曲面S内自由电量q随时间的增加率图6-5全电流示意全电流连续性原理或(6-12)(6-11)此时穿出曲面S的位移电流则为(6-13)大理大学罗凌霄编修16由于(6-14)(6-15)所以故或其中叫做全电流密度(全迁移电流密度)。
是非电性场强度。(6-15)式叫做积分形式的全(迁移)电流连续性原理。大理大学罗凌霄编修17穿过不闭合的曲面S的全(迁移)电流全(迁移)电流连续性原理表明:在时变场中,全(迁移)电流线无源,它们是永远闭合的,具体地说即在传导电流中断处,必有运流电流、或位移电流接续。
微分形式的全(迁移)电流连续性原理为(6-16)需要注意的是,虽然被叫做全(迁移)电流密度,但是其中并未包含磁化电流密度
(或写为)。把磁化电流(或者叫做束缚电流)加入其中,才构成真正的全电流。可以证明磁化电流是连续的,所以全电流也是连续的。大理大学罗凌霄编修18全电流定理磁介质中的安培环路定理是表征恒定磁场的基本方程之一,它的积分形式为,其中I是流过回路l所围曲面的自由电流。只要自由电流连续,安培环路定理必定成立。在时变场中,由于自由电流不一定处处连续,安培环路定理就失去了存在的前提。但是如果把闭合回路所交链的电流的概念加以拓广,把它理解为全(迁移)电流,即有(6-17)上式称之为全(迁移)电流定理,或者叫做全(迁移)电流的安培环路定理。它说明,磁场强度沿任意回路的线积分,等于穿过该回路所围曲面的全(迁移)电流。该式又称为(关于磁场强度的)麦克斯韦第一积分方程,还可以叫做磁场强度的环量定律。
大理大学罗凌霄编修19如果计及磁化电流,那么(6-17)式变成(6-17)式还可以表示为(6-17*)或者(6-17**)(6-17***)提出位移电流概念,从而把安培环路定理修正为普遍适用的规律,是麦克斯韦在电磁场理论方面最重大的理论成就。大理大学罗凌霄编修20由斯托克斯公式,有式(6-19)即为(关于磁场强度的)麦克斯韦第一微分方程,也可以叫做磁场强度的旋度定律。麦克斯韦第一方程表明,不仅运动电荷将产生涡旋磁场,变动的电场也将产生变动的涡旋磁场。它说明电与磁二者间的关系,因而麦克斯韦第一方程是描述时变电磁场中不同的两个方面——电场与磁场关系的方程之一,它是解决时变电磁场问题的一个基本依据。(6-18)于是(6-19)补充(6-19*)大理大学罗凌霄编修21电磁感应定律经过法拉第、楞茨的实验探索和妞蒙、韦伯、麦克斯韦的理论研究,总结出导体回路内所产生的感应电动势,等于回路交链磁通随时间的变化率的负值,即
表达式中的负号说明,导体回路内变化磁通产生的电动势,总是企图产生这样的感应电流,使感应电流所产生的磁通,去抵消或者补偿引起感应电动势的磁通量的变化。或者使感应电流激发的磁场,去反抗引起感应电动势的原因。§6-3电磁感应定律例如当线圈回路的正向磁通增长时,感应电动势。感应电流的方向使它激发的磁场穿过回路的磁通去抵消引起感应电动势的磁通量的增加。(6-20)大理大学罗凌霄编修22
图6-6磁通与电动势的正方向图6-7感生电动势的实际方向
这表明线圈回路所产生的感应电动势,其真实方向与线圈回路电动势的正方向相反。
大理大学罗凌霄编修23
麦克斯韦第二方程静电场和恒定电场是位场,位场中电场强度的线积分与路径无关,位电场强度沿回路的线积分等于零。当场域中存在非位电场时,总电场强度的环路积分并不为零,而等于非位电场强度的环路积分非位电场即是其它形式能量转换为电场能量的场所。麦克斯韦认为,处在变化磁场中的不动的导体回路中产生的感应电动势(即感生电动势),就等于有旋电场强度在导体回路中的环量,即(6-21)位电场又叫做库仑场。非位电场是由变化的磁场激发的,它又叫做涡旋电场(或有旋电场)。涡旋电场这一概念是由麦克斯韦提出来的。大理大学罗凌霄编修24所以,(6-22)根据电磁感应定律,导体回路中的感生电动势(6-23)(6-24)麦克斯韦认为,即使这个不动的回路不是由导体材料构成,而是由电介质构成,或者干脆就是一个假想的几何回路,只要它处在变化的磁场中,其中就有可能产生感生电动势,电磁感应定律对它仍然成立。和导体回路的差别仅仅是其中没有感生电流。所以(6-24)式对不动的假想回路依然成立。实际上,它对于运动的假想回路也是成立的。原因在于:大理大学罗凌霄编修25(6-24)式涉及的是电场强度沿回路的线积分,以及磁感应强度随时间的减少率穿过回路所围曲面的通量,所以,即使假想的回路相对于我们在其中测量磁场和电场的参考系作运动,对于任意一个时刻的回路和它此刻所圈围的曲面,(6-24)对它仍然成立。(6-24)(6-24)式叫做麦克斯韦第二积分方程,也可以叫做电场强度的环量定律。提出涡旋电场概念,并且把电磁感应定律改写成(6-24)式,是麦克斯韦在电磁理论方面的第二大理论成就。大理大学罗凌霄编修26对电磁感应定律的补充说明:右边第一项是由于磁场变化而产生的感应电动势,叫做感生电动势;第二项是由于导体回路运动而产生的感应电动势,叫做动生电动势。可以证明,对于运动的回路l所圈围的任意的曲面S,穿过它的磁通随时间的变化率所以,对于在变化的磁场中运动的导体回路,其中的感应电动势其中的是回路上的线元矢量的运动速度。大理大学罗凌霄编修27根据斯托克斯公式,故得此即麦克斯韦第二微分方程,或称为微分形式的电磁感应定律,还可以叫做电场强度的旋度定律。麦克斯韦第一方程阐明了变动的电场产生变动的涡旋磁场,而麦克斯韦第二方程则阐明了变动的磁场产生变动的涡旋电场。因而麦克斯韦第一与第二方程从不同的方面揭示了时变电磁场中电场与磁场之间的相互联系。变动的电场将在空间产生变动的磁场,而变动的磁场又将在空间产生变动的电场,麦克斯韦就是根据这一结论,预见了电磁波的存在。
麦克斯韦第一、第二方程是我们解决时变电磁场问题的基本依据。
(6-25)(6-26)大理大学罗凌霄编修28
例6-4设空间磁场的磁感应强度垂直于磁场的平面上,有一形状如数字8的闭合回路,图中斜线区域的面积分别为求闭合线路中的感生电动势。解如图6-8所示,穿过面积与的磁通分别为图6-8例6-4图由于上述两磁通在闭合线路中的感生电动势方向相反,取闭合回路感生电动势e的正方向同e1的正方向一致,则大理大学罗凌霄编修29例6-5
均匀磁场内,磁通密度B=Bmcosωt。设磁场内有一面积为S的平面线圈回路,t=0时其初始位置于α=0处。当线圈按角速度ω1转动时,求此平面回路中所产生的感应电动势。图6-9例6-5图解如图6-9,穿过平面回路所界定的面积S的磁通回路中感应的电动势为大理大学罗凌霄编修30将前几节中所导出的公式稍加汇总,加上媒质的特性方程(或称为辅助方程),就可得到时变电磁场的一组完整的方程式。即为麦克斯韦方程组。§6-4麦克斯韦电磁场方程组(6-30)(6-29)(6-28)(6-27)(6-32)(6-33)(6-31)洛伦兹力公式是独立于麦克斯韦方程组之外的电磁场的基本理论,堪称一流成就。微分表示式不能用在媒质交界面处。积分表示式最为基本,普遍适用。大理大学罗凌霄编修31库仑定律、毕-萨-拉定律和电荷守恒定律都可以从麦克斯韦方程组媒质特性方程可以借助于洛伦兹力公式和量子力学推演出来。所以麦克斯韦方程组和洛伦兹力公式是电磁场理论的最基本、最核心的规律。推演出来。31大理大学罗凌霄编修32麦克斯韦第一及第二方程描述着统一电磁场两个矛盾着的方面——电场与磁场相互依存(一方存在必以它方存在为前提)、相互制约(数量上、方向上以及变化规律上是相互约制的)而又相互转化(变动电场转化为变动磁场,变动磁场转化为变动电场)。式(6-29)说明统一的电磁场的两个方面之一——磁场本身所具有的另一规律——无散度,亦即磁场不可能为单极磁荷所激发。式(6-30)说明统一电磁场的另一方面——电场本身所具有的另一规律——有散度,亦即电场可以由点源电荷所激发。式(6-31)、式(6-32)及式(6-33)说明统一的电磁场与其所处空间媒质的关系。大理大学罗凌霄编修33将麦克斯韦方程组的积分方程式分别应用于场的不同媒质交界面,即可得到时变电磁场的边值关系。
不同电介质交界面的边值关系
省略导出边值关系的过程,此时边值关系为§6-5时变电磁场中不同媒质交界面的边值关系、解的唯一性定理(6-34)(6-35)(6-36)(6-37)大理大学罗凌霄编修34导体表面介质中有图6-11理想导体表面的电场
电介质与理想导体交界面的边值关系
由于电磁波不能透入理想导体内部,故导体内将不存在电场与磁场,亦即
。
大理大学罗凌霄编修35沿导体表面无运流电流,亦无位移电流沿导体表面流动,得。此处
表示垂直流过单位长度上的面传导电流值。图6-12介质与理想导体交界面的磁场最后将磁通连续性原理的积分表达式运用于场的边界,则得。小结:介质与理想导体交界面处的边界条件为(6-41)(6-40)(6-39)(6-38)大理大学罗凌霄编修36解的唯一性定理时变电磁场的求解问题,同样是一个求解偏微分方程满足定解条件的解的问题,是一个既有初始条件又有边界条件的定解问题,或称为混合问题。
时变电磁场同样存在着唯一性定理,所求定解问题满足下述条件的解具有唯一性,其具体内容如下:设被边界Γ所界定的场域Ω中,若已知:
1.t=0时,场域Ω中每点电场强度E的初始值与磁场强度H的初始值;
2.当t>0的所有时间内,边界面Γ上电场强度的切线分量Et或者磁场强度的切线分量Ht。则麦克斯韦电磁场方程组具有唯一确定解。亦即时变电磁场的解,由电磁场初始值,及t>0时边界上的电场强度切线分量或者磁场强度切线分量所唯一确定。大理大学罗凌霄编修37电磁场能量在时变电磁场中,电场与磁场同时存在,因此任何一瞬间,空间任一点的电磁能量密度应为此时电场能量密度与磁场能量密度之和,即§6-6电磁场能量、坡印廷矢量及能量流这是麦克斯韦由逻辑推理所得的假设之一,至今尚无直接实验证明,不过建立在此假设之上的许多理论,却为实践所证实。时变电磁场中场量是随时间而变动的,场的能量状态亦是随时间而变动的。对于线性媒质(6-43)大理大学罗凌霄编修38坡印廷矢量及能量流时变电磁场中,由于电场与磁场的不断变化,并由空间一点传递到另一点,因而形成传播于空间携带着电磁能量的电磁波,无论是电讯系统或电力系统,它们的功率传输过程都是电磁能量在空间的传播过程。下面研究电源(指化学电源、温差电源、光电源)外部的不动的导体中的电磁场:设空间某点的电磁能量密度为则该点电磁能量密度随时间的变化率为(6-44)(6-45)(6-46)大理大学罗凌霄编修39——该点所在处单位体积内电场用以增加运流电流体电荷的动能所供给的功率。——该点处电磁能量密度随时间的增加率。——该点处电场对传导电流作功的功率密度。由于假设导体不动,又处于电源(指化学电源、温差电源、光电源)外部,所以此功率密度等于传导电流引起的焦尔热损耗功率密度。所以等式左端代表该点电磁场能量密度随时间的增加率与单位体积内电磁场能量耗散功率之和。大理大学罗凌霄编修40(6-49)两边求体积分,得(6-50)对根据高斯公式,(6-49)式右边的所以大理大学罗凌霄编修41图6-13穿出闭合曲面的坡印廷矢量图即为单位时间内穿入闭合曲面S的电磁能量为单位时间内穿出闭合曲面S的电磁能量(6-50)式左端是体积V内电磁场能量随时间的增加率以及电磁场能量的耗散功率之和。由于体积V内没有电源可以提供电磁能量,根据能量守恒定律,V中单位时间内增加的电磁能与损耗的电磁能的总和,应等于单位时间内穿过V的边界面S流入V中的电磁场能量。所以(6-50)大理大学罗凌霄编修42它的大小等于单位时间内垂直穿过单位面积的电磁能量,方向沿着电磁能量传输的方向。显然,垂直于和所组成的平面。的单位为瓦特每平方米(W/m2)。坡印矢量描述了电磁能在空间传播的规律:无论是电力传输或电讯传输,都必须是通过空间电磁场来实现能量传送的。图6-14坡印廷矢量的确定单位时间内流过曲面S的电磁能量等于所以电磁能流密度矢量(坡印廷矢量)为(6-51)大理大学罗凌霄编修43忽略导线的电阻和电阻压降,设双输电线所加电压为u,流过的电流为i。设两根导线之间的距离远远大于导线的半径,那么电轴对于导线几何轴线的偏离可图6-15两平行输电线的电场和磁场内穿过面元dS的能量平行双输电线的功率传输以忽略。于是,在两轴线的垂面内,到两轴线的距离的比值为常数的点既组成磁感线,也组成等位线。它们都是两簇偏心圆。因为电场线与等位线处处正交,而磁感线与等位线重合,所以此时电场线与磁感线处处正交,将空间划分为无数正交网孔。大理大学罗凌霄编修44图6-15两平行输电线的电场和磁场内穿过面元dS的能量取任一网孔k,令其沿电场线方向的边长为dn,沿磁感线方向的边长为dm。网孔的面积为dS=(dn×dm)。单位时间内穿过此面元dS的电磁能量(6-52)(6-53)由于两根磁感线(亦即两根等位线)之间的电位差是一样的Edn是两根磁感线之间的电位差能流密度矢量垂直纸面向里传输功率大理大学罗凌霄编修45在以上的推导过程中忽略了导线的电压降。如果考虑导线电压降,取电场强度E的轴线分量Ez进行计算,知道电磁能量还会渗漏进导线中。
图6-16两平行输电线电场可见,输电线所传输的能量,并非由导线内部传送,而是通过线外的空间,以电磁波的方式(稳恒情形是恒定能量流的形式)传播的,此时传输线仅起引导作用。大理大学罗凌霄编修46电磁矢量动态位的达朗贝尔方程在时变电磁场中,由于(6-54),可引入电磁矢量动态位,并定义
具有多值性,
可附加任意标量场的梯度而不影响
的单值性。(6-55)(6-56)(6-57)(6-58)(6-59)§6-7电磁动态位及其微分方程
称之为电磁标量动态位,简称为电磁标量位。大理大学罗凌霄编修47若空间媒质为线性时,在不考虑运流电流的情况下,引用麦克斯韦第一方程,则有当媒质均匀时(6-60)(6-61)由矢量公式(6-63)(6-62)大理大学罗凌霄编修48对于所引入的
场,给其散度
以一约束条件,这一约束条件的选择当然应使求解的方程简化,并能单值地确定电磁矢量位与电磁标量位。这一约束条件可以选择洛伦兹条件,即上式即为电磁矢量位应满足的达朗贝尔方程。在稳恒情况下,它退化为矢量磁位满足的泊松方程。(6-64)(6-65)当空间不存在传导电流时,则得电磁矢量位所满足的波动方程,即(6-66)其中的于是大理大学罗凌霄编修49且由于电磁标量位的达朗贝尔方程在媒质为均匀时,运用麦克斯韦方程组中电位移矢量的散度方程,并考虑洛伦兹约束条件可得电磁标量位的达朗贝尔方程。上式即为电磁标量位所应满足的达朗贝尔方程。在稳恒情形,它退化为电位满足的泊松方程。(6-67)(6-68)(6-69)(6-70)故即(6-71)考虑洛伦兹条件得大理大学罗凌霄编修50当空间不存在自由体电荷密度时,则得电磁标量位所满足的波动方程
(6-72)
时变电磁场边值问题的求解,可从求解达朗贝尔方程着手。实际问题中,由于空间传导电流并不存在,因此通常需要求解的只是波动方程。大理大学罗凌霄编修51滞后位波动方程解的形式如何,它与静态场的解究竟有什么不同之处?设均匀媒质空间,有一点电荷q,其量值随时间t变化,原因是它的电荷与周围电荷有交换。根据独立作用原理和叠加原理,可以单独考虑此点电荷所起的作用。在此情况下,对于场源以外空间各点,均满足波动方程。选择点电荷所在点为坐标原点,在选择球面坐标情况下,电磁标量位波动方程具有如下形式:
由于场量以电荷所在点为中心而具有球面对称关系,因而场量仅为半径r和t的函数,所以上式变成大理大学罗凌霄编修52(6-74)(6-73)上述表达式与电路中无损耗均匀输电线方程相似,比照无损耗均匀输电线方程的解,上式的解有如下形式:(6-75)(6-76)也可写成故大理大学罗凌霄编修53可见电磁标量位是一个由入射波(直波)分量与反射波(回波)分量所组成的具有波动性质的量。入射波分量由点电荷源沿半径方向四周发散,而反射波分量则由四周沿半径相反方向向点电荷源汇集。任何一个分量的波阵面都是一个球面,因此称这种波为球面波。
在无限大均匀媒质空间,由于此时无反射波存在,故有(6-77)将上式变形,则(6-78)电磁动态位方程的特例,即电磁矢量位、电磁标量位将满足各自的静态方程。也就是说恒定磁场与静电场不过是时变电磁场在场源不随时间变化情况下的特例。
大理大学罗凌霄编修54此函数
称为电磁标量滞后位,它说明:空间任一点的电磁标量位的变化,较之引起此变化的点源电荷的变化,要滞后一个传播时间r/v。亦即经过时间r/v,场点才感受到场源发生的变化。将此式与式(6-78)比较,可见应具有与相同的量纲,因而式(6-78)应为(6-79)(6-80)若场源点电荷值q不随时间变化,则大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度纺织品物流仓储与代工合同
- 2024年度美陈设计安装工程合同
- 2024年度鱼塘保险服务合同
- 2024至2030年中国玉凳数据监测研究报告
- 2024年度保险合同:保险公司与投保人之间就保险产品和服务达成的合同
- 04年车身广告租赁合同样本
- 空心砖行业工程采购合同
- 瓷石购销合作合同
- 2024年度网络安全防护与数据处理服务合同
- 花岗岩交易购销合同
- 2024年全国普法知识考试题库与答案
- 教学计划(教案)-2024-2025学年人教版(2024)美术一年级上册
- 2024年全国职业院校技能大赛中职组(婴幼儿保育赛项)考试题库-下(多选、判断题)
- 机械工程导论-基于智能制造(第2版)第3章 机械设计与现代设计方法
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷诗歌鉴赏试题讲评课件
- 任务二:诗歌朗诵教案 人教版
- 2024年福建省福州三牧中学中考三模英语试题(原卷版)
- DLT 572-2021 电力变压器运行规程
- DL∕T 1764-2017 电力用户有序用电价值评估技术导则
- 四年级上册英语教案-UNIT FOUR REVISION lesson 14 北京版
- 公务员职业道德建设和素质能力提升培训课件(共37张)
评论
0/150
提交评论