版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合情推理(1).推理:从一个或几个已知命题得出另一个新命题的思维过程。推理前提结论---推理所依据的命题.---根据前提所得到的命题..推理案例1:前提:当n=0时,n2-n+11=11;当n=1时,n2-n+11=11;当n=2时,n2-n+11=13;当n=3时,n2-n+11=17;当n=4时,n2-n+11=23;当n=5时,n2-n+11=31;11,11,13,17,23,31都是质数.结论:对于所有的自然数n,n2-n+11的值都是质数.归纳推理.推理案例2:前提:结论:矩形的对角线的平方等于长与宽的平方和.长方体的对角线的平方等于长、宽、高的平方和.类比推理归纳推理合情推理.例1:蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇、鳄鱼、海龟、蜥蜴都是爬行动物。由此猜想:例2:三角形的内角和是180度,凸四边形的内角和是360度,凸五边形的内角和是540度,……由此猜想:所有的爬行动物都是用肺呼吸的。凸n边形的内角和是(n-2)×1800归纳推理.例3:由此猜想:.归纳推理的定义:归纳推理:概括、推广猜测一般性结论简言之,归纳推理是由部分到整体、由个别到一般的推理。归纳推理的思维过程如下:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实推演出一般性的结论的推理,称为归纳推理(简称归纳).实验、观察构建数学:.推理案例3:金受热后体积膨胀,银受热后体积膨胀,铜受热后体积膨胀,铁受热后体积膨胀,金、银、铜、铁是金属的部分小类对象,它们受热后分子的凝聚力减弱,分子运动加速,分子彼此距离加大,从而导致体积膨胀
所以,所有的金属受热后都体积膨胀。再观察两个例子,你能得到归纳推理的一般模式吗?.推理案例4:磨擦双手(S1)能产生热(P),敲击石头(S2)能产生热(P),锤击铁块(S3)能产生热(P),
磨擦双手、敲击石头、锤击铁块都是物质运动;所以,物质运动能产生热。归纳推理的一般模式:S1具有P,S2具有P,……Sn具有P,(S1,S2,…,Sn是A类事物的对象)所以A类事物具有P.1.归纳推理是依据特殊现象推断一般现象,因而,由归纳推理所得的结论超越了前提所包容的范围.2.归纳推理是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.结论是否真实,还需经过逻辑证明和实践证明,因此它不能作为数学证明工具。3.归纳推理的前提是特殊的情况,因而归纳推理是立足于观察、经验和实验的基础之上.归纳推理是一种具有创造性的推理,通过归纳得到的猜想可作为进一步研究得起点,帮助人们发现问题和提出问题。归纳推理的几个特点:.⑶检验猜想。⑵提出带有规律性的结论,即猜想;⑴对有限的资料进行观察、分析、归纳整理;归纳推理的一般步骤:.例1:观察下图,可以发现1+3+…+(2n-1)=n2.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=5,……数学应用:.例2:已知数列{an}的第1项a1=1且(n=1,2,3…),试归纳出这个数列的通项公式..例3:数一数图中的凸多面体的面数F、顶点数V和棱数E,然后用归纳法推理得出它们之间的关系..多面体面数(F)顶点数(V)棱数(E)三棱锥四棱锥三棱柱五棱锥立方体正八面体五棱柱截角正方体尖顶塔464556598.多面体面数(F)顶点数(V)棱数(E)三棱锥四棱锥三棱柱五棱锥立方体正八面体五棱柱截角正方体尖顶塔464556598668612812610.多面体面数(F)顶点数(V)棱数(E)三棱锥四棱锥三棱柱五棱锥立方体正八面体五棱柱截角正方体尖顶塔46455659866861281261077916910151015F+V-E=2猜想欧拉公式.例4:如图有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.1.每次只能移动1个金属片;2.较大的金属片不能放在较小的金属片上面.试推测;把n个金属片从1号针移到3号针,最少需要移动多少次?解;设an表示移动n块金属片时的移动次数.当n=1时,a1=1当n=2时,a2=3123.当n=1时,a1=1当n=2时,a2=3解;设an表示移动n块金属片时的移动次数.当n=3时,a3=7当n=4时,a4=15猜想an=2n-1123.1.观察下列等式,并从中归纳出一般的结论:(1)(2)1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),……数学巩固:.凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条;……猜想:凸n边形的对角线条数比凸n-1边形多n-2条对角线。由此,凸n边形对角线条数为2+3+4+5+…+(n-2).凸n边形有多少条对角线?2.凸n边形有多少条对角线?.3.在同一平面内,两条直线相交,有一个交点;三条直线相交,最多有几个交点?四条直线相交,最多有几个交点?……六条直线相交,最多有几个交点?……n条直线相交,最多有几个交点?..歌德巴赫猜想的提出过程:3+7=10,3+17=20,13+17=30,歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇质数之和”即:偶数=奇质数+奇质数改写为:10=3+7,20=3+17,30=13+17.6=3+3,1000=29+971,8=3+5,1002=139+863,10=5+5,…12=5+7,14=7+7,16=5+11,18=7+11,…,数学阅读:.哥德巴赫猜想(GoldbachConjecture)世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。(b)任何一个>=9之奇数,都可以表示成三个奇质数之和。.这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,....等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。.哥德巴赫猜想(GoldbachConjecture)在陈景润之前,关於偶数可表示为s个质数的乘积与t个质数的乘积之和(简称“s+t”问题)之进展情况如下:1920年,挪威的布朗(Brun)证明了“9+9”。1924年,德国的拉特马赫(Rademacher)证明了“7+7”。1932年,英国的埃斯特曼(Estermann)证明了“6+6”。1937年,意大利的蕾西(Ricei)先後证明了“5+7”,“4+9”,“3+15”和“2+366”。1938年,苏联的布赫夕太勃(Byxwrao)证明了“5+5”。1940年,苏联的布赫夕太勃(Byxwrao)证明了“4+4”。1948年,匈牙利的瑞尼(Renyi)证明了“1+c”,其中c是一很大的自然数。1956年,中国的王元证明了“3+4”。1957年,中国的王元先後证明了“3+3”和“2+3”。1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了“1+5”,中国的王元证明了“1+4”。1965年,苏联的布赫夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了“1+3”。1966年,中国的陈景润证明了“1+2”。最终会由谁攻克“1+1”这个难题呢?现在还没法预测。.哥德巴赫猜想(GoldbachConjecture)目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘sTheorem)?“任何充份大的偶数都是一个质数与一个自然数之和,而後者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为“1+2”的形式。.四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 液压模锻锤主机课程设计
- 测试传感技术课程设计
- 瑜伽减脂课程设计海报图
- 建筑设计行业行政后勤工作总结
- 2024年度直系亲属间房屋买卖及装修合同3篇
- 生物科技行业创新研发方向
- 幼儿园工作总结播种希望绽放未来
- 在工作中培养领导力的实践计划
- 放射科护士的工作感悟
- 电力水务行业卫生维护
- 小学生科技社团社团活动总结
- 部编版三年级上册语文古诗文日积月累及同步练习题
- 沉井与沉管法施工-沉井法施工
- 鲁教版六年级上课册数学2.10科学计数法
- 南艺 28685 设计原理考点(本科)
- GB/T 8733-2016铸造铝合金锭
- GB/T 17514-2017水处理剂阴离子和非离子型聚丙烯酰胺
- GB 5768.4-2017道路交通标志和标线第4部分:作业区
- 废气治理设施运行管理规程
- 出租厂房建筑和设施安全检查表
- 项目验收交接单(运维部)
评论
0/150
提交评论