应用时间序列分析报告实验报告材料_第1页
应用时间序列分析报告实验报告材料_第2页
应用时间序列分析报告实验报告材料_第3页
应用时间序列分析报告实验报告材料_第4页
应用时间序列分析报告实验报告材料_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实用标准应用时间序列分析实验报告学院名称 理学院专业班级 应用统计学14-2学生姓名 张艳雪学号201411081051文案大全实用标准齐鲁工业大学实验报告 成绩课程名称《应用时间序列分析实验》 指导教师 黄玉林 实验日期 院(系)理学院专业班级统计14-2实验地点机电楼C428学生姓名张艳雪学号201411081051同组人无实验项目名称ARIMA模型、确定性分析法,多元时间序列建模一、实验目的和要求熟悉非平稳序列的确定性分析法:趋势分析、季节效应分析、综合分析熟悉差分平稳序列的建模步骤。掌握单位根检验、协整检验、动态回归模型的建立。二、实验原理序列的各种变化都归结于四大因素的综合影响:长期趋势(Trend),循环波动(Circle),季节性变化(Season),机波动(Immediate).常假设它们有如下的相互模型:加法模型 Xt Tt Ct St It乘法模型 Xt TtCt St It混合模型 模型结构不唯一非平稳序列如果能通过适当阶数的差分后实现平稳,就可以对差分后序列进行ARMA模型拟合了,所以 ARIMA模型是差分运算与 ARMA模型的组合d(B)t(B)xt单位根检验:1)DF检验;(2)ADF检验;(3)PP检验;动态回归模型ARIMAX如果两个非平稳序列之间具有协整关系,则先建立它们的回归模型,再对平稳的残差序列建立ARMA模型。ki(B)Blixittytk1i(B)(B)(B)at文案大全实用标准三、实验内容1、P202页:第7题(X11因素分解法)2、P155页:第3题(乘积季节模型)3、P240页:第4题出口为xt,进口为yt,回答以下问题(1)画出xt,yt的时序图,用单位根检验序列它们的平稳性;(2)对lnxt,lnyt分别拟合模型(提示:建立 ARIMA模型);考察lnyt,lnxt的协整关系,建立lnyt关于lnxt的协整模型,同时建立误差修正模型。四、实验过程(一) P202页:第7题(X11因素分解法)绘制序列时序图。(程序见附录)由上图可得季节序列的振幅随序列水平的变化而变化, 所以季节效应与趋势效应不独立, 采用乘法模型:进入x-11季节调整模型经过三个阶段共十步的重复迭代后,得到如下的拟合效果图:文案大全实用标准显然,该地区奶牛的月度产奶量序列具有显著的季节变动特征。(二) P155页:第3题(乘积季节模型)1.绘制序列时序图。 绘制时序图,如图 1所示(程序见附录 1)。文案大全实用标准图1美国月度事故死亡人数序列时序图时序图显示该序列具有以年为周期的季节效应。差分平稳化:对原序列作1阶12步差分,希望提取原序列季节效应,差分后序列时序图如图2所示。图2美国月度事故死亡人数 1阶12步差分后序列时序图时序图显示差分后序列类似平稳。3.模型定阶:考察差分后序列自相关图,如图 3,进一步确定平稳性判断,并估计拟合模型的阶数。文案大全实用标准图3美国月度事故死亡人数 1阶12步差分后序列自相关图自相关图显示延迟12阶自相关系数显著大于2倍标准差范围,这说明差分后序列中仍蕴含着非常显著的季节效应。延迟1阶的自相关系数也大于2倍的标准差,这说明差分后序列还具有短期相关性。观察偏自相关图,如图 4,得到的结论和上面的结论一致。图4美国月度事故死亡人数 1阶12步差分后序列偏自相关图图5序列白噪声检验图5显示,原序列延迟各阶LB统计量的P值小于显著性水平0.05,所以拒绝原假设,序列不通过白噪声检验。根据差分后序列的自相关图和偏自相关图的性质,拟合乘积季节模型ARIMA(p,d,q) (P,D,Q)12。文案大全实用标准自相关图显示,12阶以内的自相关系数1阶截尾,偏自相关图显示,12阶以内的偏自相关系数1阶截尾,所以尝试使用ARMA(1,0)模型提取差分后序列的短期自相关信息。再考虑季节自相关特征,这时考察延迟 12阶、24阶等以周期长度为单位的自相关系数和偏自相关系数的特征。自相关图显示延迟12阶自相关系数显著非零,而偏自相关图显示延迟12阶偏自相关系数显著非零,这时用以12步为周期的ARMA(1,1)12模型提取差分后序列的季节自相关信息。参数估计:图6拟合模型综合前面的差分信息,我们要拟合的乘积季节模型为 ARIMA(1,1,0) (1,1,1)12。使用条件最小二乘估计方法,确定该模型的口径为:(11B)(112B12)12xt(11B)t(10.87376B)(10.53808B12)12xt0.49078B)t(1模型检验:对序列拟合ARIMA(1,1,0)(1,1,1)12模型,模型及模型参数的显著性检验如图7、8所示。文案大全实用标准图7模型参数的显著性由图7知,拟合效果显示模型参数显著。图8残差白噪声检验对拟合模型进行白噪声检验,结果显示P值都大于显著性水平0.05.接受原假设,残差序列通过白噪声检验,模型显著,说明模型拟合良好,对序列相关信息提取充分。将序列拟合值和序列观察值联合作图,如图 9所示。图9美国月度事故死亡人数拟合效果图说明:图中,点为序列观察值;曲线为序列拟合值。文案大全实用标准从图9可以直观地看出该乘积季节模型对原序列的拟合效果良好。(三)P240页:第4题1.画出xt,yt的时序图,用单位根检验序列的平稳性;输出时序图如图 1所示(程序见附录 2)。图1我国出口总额Xt、进口总额yt时序图图1中,黑色为出口总额xt序列时序图,红色为进口总额yt序列时序图。从图1中可以看出出口总额xt序列、进口总额yt序列均显著非平稳,这个直观判断还可以通过单位根检验验证。同时时序图显示这两个序列具有某种同变关系。对我国出口总额序列xt进行ADF检验,单位根检验结果如图2所示。文案大全实用标准图2出口总额 xt白噪声、单位根检验检验结果显示,无论考虑何种类型的模型,检验统计量的 P值均显著大于0.05的显著性水平,所以可以认为中国我国出口总额序列xt显著非平稳,且这六种处理均不能实现残差序列平稳。对我国进口总额序列 yt进行ADF检验,单位根检验结果如图 3所示。图3进口总额 yt白噪声、单位根检验同出口序列xt的检验结果一样,在显著性水平取为0.05时,可以认为我国进口序列yt非平稳,且这六种处理均不能实现残差序列平稳。显然,这两个序列的 ADF检验结果与根据时序图得到的直观判断完全一致2.对lnxt,lnyt分别拟合模型(提示:建立 ARIMA模型);对我国出口对数序列 lnxt 和进口对数序列lnyt 绘制时序图,如图4所示。图4我国出口总额 Xt、进口总额 yt取对数时序图文案大全实用标准图4中,黑色线代表我国出口对数序列lnxt,红色线代表我国进口对数序列lnyt。时序图显示这两个对数序列有显著的上升趋势,为典型的非平稳序列。同时时序图显示这两个序列具有某种同变关系。因为序列呈现出近似线性趋势,所以选择1阶差分。1阶差分后出口对数序列lnxt时序图如图5所示。图5对数序列 Lnx差分时序图时序图显示,lnxt差分后序列在均值附近比较稳定地波动。为了进一步确定平稳性,考察差分后序列的自相关图,如图6所示。图6对数序列 Lnxt差分后自相关图自相关图显示序列有很强的短期相关性,所以可以初步认为lnxt1阶差分后序列平稳。对平稳的1阶差分序列进行白噪声检验,白噪声检验结果如图 7所示。文案大全实用标准图7lnxt 一阶差分后序列白噪声检验在检验的显著性水平取为 0.05的条件下,由于延迟 6阶、12阶的P值均小于0.05,所以lnxt差分后的序列不能视为白噪声序列,即差分后序列还蕴含着不容忽视的相关信息可以提取。对平稳非白噪声差分序列拟合ARMA模型,1阶差分后序列的自相关图(见图6)已经显示该序列有不截尾的性质。再考察其偏自相关系数的性质,如图8所示。图8对数序列 Lnxt差分后偏自相关图偏自相关图显示出1阶截尾性,所以考虑用AR(1)模型拟合lnxt1阶差分后序列。考虑到前面已经进行的1阶差分运算,实际上是用ARIMA(1,1,0)模型拟合原序列。对序列拟合ARIMA(1,1,0)模型,模型参数及模型的显著性检验如图9、所示。文案大全实用标准图9模型参数显著性检验由图9知,系数显著性检验显示两参数均显著。对残差序列进行白噪声检验,检验结果如图 10所示。图10残差白噪声检验显然,拟合检验统计量的 P值都显著大于显著性检验水平 0.05,可以认为残差序列即为白噪声序列,模型显著,这说明 ARIMA(1,1,0)模型对lnxt 序列建模成功。图11模型在条件最小二乘估计原理下,拟合结果为:lnxt0.14689110.39945Bt2将对数序列拟合值lnxt和对数序列观察值lnxt联合作图,如图12所示。文案大全实用标准图12对数序列Lnxt拟合效果图说明:图中,星号为序列观察值;曲线为拟合值。从图可以直观地看出该 ARIMA(1,1,0)模型对原序列的拟合效果良好。因为对数序列lnyt呈现出近似线性趋势,所以选择1阶差分。1阶差分后进口对数序列lnyt时序图如图13所示。图13对数序列 Lny差分时序图时序图显示,lnyt差分后序列在均值附近比较稳定地波动。为了进一步确定平稳性,考察差分后序列的自相关图,如图14所示。文案大全实用标准图14对数序列 Lnyt差分后自相关图自相关图显示序列有很强的短期相关性,所以可以初步认为lnyt1阶差分后序列平稳。对平稳的1阶差分序列进行白噪声检验,白噪声检验结果如图 15所示。图15lnyt 一阶差分后序列白噪声检验在检验的显著性水平取为0.05的条件下,由于延迟6阶的P值小于0.05,所以lnyt差分后的序列不能视为白噪声序列,即差分后序列还蕴含着不容忽视的相关信息可以提取。对平稳非白噪声差分序列拟合ARMA模型,1阶差分后序列的自相关图(见图14)已经显示该序列有1阶截尾的性质。再考察其偏自相关系数的性质,如图所示。文案大全实用标准图16对数序列 Lnyt差分后偏自相关图偏自相关图显示该序列 1阶截尾的性质,所以考虑用 AR(1)模型拟合lnyt1阶差分后序列。考虑到前面已经进行的 1阶差分运算,实际上是用 ARIMA(1,1,0)模型拟合原序列。对序列拟合 ARIMA(1,1,0)模型,模型参数及模型的显著性检验如图17、18所示。图17模型参数显著性检验由图17知,系数显著性检验显示两参数均显著。对残差序列进行白噪声检验,检验结果如图 18所示。图18残差白噪声检验文案大全实用标准显然,拟合检验统计量的 P值都显著大于显著性检验水平 0.05,可以认为残差序列即为白噪声序列,模型显著。这说明 ARIMA(1,1,0)模型对该序列建模成功。图19模型在条件最小二乘估计原理下,拟合结果为:lnyt0.14672110.36364Bt将对数序列拟合值lnyt和对数序列观察值lnyt联合作图,如图20所示。图20对数序列Lnyt拟合效果图说明:图中,星号为序列观察值;曲线为拟合值。从图20可以直观地看出该 ARIMA(1,1,0)模型对原序列的拟合效果良好。3.考察lnyt,lnxt的协整关系,建立 lnyt关于lnxt的协整模型,同时建立误差修正模型。对我国出口对数序列 lnxt 和进口对数序lnyt 绘制时序图,如图 4所示。可以发现时序图显示这两个序列具有某种同变关系, 可以考虑建立ARIMAX模型。文案大全实用标准对lnxt、lnyt、lnxt1 阶差分、{ lnyt}序列分别进行单位根检验( ADF)。输出结果如图21——24所示。图21对数序列 lnXt1 阶单位根检验检验结果显示,无论考虑何种类型的模型,检验统计量的P值均显著大于0.05的显著性水平,所以可以认为中国我国出口总额对数序列lnxt显著非平稳,且这六种处理均不能实现残差序列平稳。图22对数序列 lnyt1 阶单位根检验同出口对数序列lnxt的检验结果一样,在显著性水平取为0.05时,可以认为我国进口对数序列lnyt非平稳,且这六种处理均不能实现残差序列平稳。文案大全实用标准图23{ lnxt}1阶单位根检验检验结果显示,无论考虑何种类型的模型,检验统计量的 P值均显著小于0.05的显著性水平,拒绝原假设,所以可以认为中国我国出口总额 { lnxt}对序列显著平稳。图24{ lnyt}1阶单位根检验同出口{ lnxt}序列的检验结果一样,在显著性水平取为 0.05时,可以认为我国进口{ lnyt}序列平稳,且这六种处理均能实现残差序列平稳。利用最小二乘估计,回归模型输出结果如图 25所示。文案大全实用标准图25回归模型结果构造出的回归模型如下:lnyt 0.99265lnxt t图26对数序列 Lnyt与对数序列 lnxt 之间的相关图相关图显示对数序列 lnyt 在延迟阶数为零时与对数序列 lnxt相关关系最大。因此可以将对数序列 lnyt 与对数序列lnxt 同期建模。文案大全实用标准图27残差单位根检验残差序列平稳,说明对数序列lnyt与对数序列lnxt之间具有协整的关系,我们可以大胆的在这两个对数序列之间建立动态回归模型而不必担心虚假回归问题。图28模型参数显著性检验,无常数项考察残差序列白噪声检验结果,如图 29所示。图29残差序列白噪声检验输出结果显示,延迟各阶LB统计量的P值都大于显著性水平0.05,可以认为残差序列为白噪声序列,对序列相关信息提取充分。文案大全实用标准图30模型根据输出的模型拟合结果可知,最后的拟合模型口径为:lnyt0.99179lnxt110.69934Bt将对数序列拟合值lnyt和对数序列观察值lnyt联合作图,如图31所示。图31对数序列Lnyt拟合效果图说明:图中,星号为序列观察值;曲线为拟合值。从图可以直观地看出该 ARIMAX模型对原序列的拟合效果良好。将序列拟合值yt和序列观察值yt联合作图,如图32所示。文案大全实用标准图32yt拟合效果图说明:图中,星号为序列观察值;曲线为拟合值。从图可以直观地看出该 ARIMAX模型对原序列的拟合效果良好。构造误差修正模型:为了研究我国的进出口总额的短期波动特征,我们利用差分序列 { lnyt}和{lnxt}以及前期误差序列{ECMt1},构造ECM模型:ECMt1 lnyt1 0.99265lnxt1输出结果如图33所。图33误差修正模型显著性检验由图33输出结果结果知ECM模型为:lnyt 1.02197 lnxt 0.31055ECMt1 t文案大全实用标准附录程序1:dataexample4_7;input x@@;t=intnx( 'quarter' ,'1jan1978'd ,_n_-1);format t yyq4.;cards;589561640656727697640599568577553582600566653673742716660617583587565598628618688705770736678639604611594634658622709722782756702653615621602635677635736755811798735697661667645688713667762784837817767722681687660698717696775796858826783740701706677711734690785805871845801764725723690734750707807824886859819783740747711751;procx11data=example4_7;quarterlydate=t;varx;outputout=outb1=xd10=seasond11=adjustedd12=trendd13=irr;dataout;setout;estimate=trend*season/100;procgplotdata=out;plotseason*t=2adjusted*t=2trend*t=2irr*t=2;plotx*t=1estimate*t=2/overlay;symbol1c=blacki=joinv=star;symbol2c=redi=joinv=nonew=2;run;程序2:datati5_3;input x@@;dif1_12=dif12(dif(x));time=intnx( 'month' ,'1jan1973'd ,_n_-1);format time year4.;cards;9007.00 8106.00 8928.00 9137.00 10017.0010826.0011317.0010744.009713.00 9938.00 9161.00 8927.00 7750.00 6981.00 8038.00 8422.00 8714.00 9512.0010120.009823.00 8743.00 9129.00 8710.00 8680.00 8162.00 7306.00 8124.00文案大全实用标准7870.009387.009556.0010093.009620.008285.008433.008160.008034.007717.007461.007776.007925.008634.008945.0010078.009179.008037.008488.007874.008647.007792.006957.007726.008106.008890.009299.0010625.009302.008314.008850.008265.008796.007836.006892.007791.008129.009115.009434.0010484.009827.009110.009070.008633.009240.00;run;procgplot;plotx*time=1dif1_12*time=2;symbol1c=coralv=circlei=join;symbol2c=bluev=stari=join;run;procarima;identifyvar=x(1,12);estimatep=1q=(1)(12);forecastlead=0id=timeout=out;run;procgplotdata=out;plotx*time=1forecast*time=2/overlay;symbol1c=blacki=nonev=doth=0.2;symbol2c=redi=joinv=none;run;程序3:datati6_4;inputyearxtyt;lnxt=log(xt);lnyt=log(yt);diflnx=dif(lnxt);diflny=dif(lnyt);cards;19502021.3195124.235.3195227.137.5195334.846.119544044.7195548.761.1195655.753195754.55019586761.7195978.171.2196063.365.1196147.743196247.133.8文案大全实用标准19635035.7196455.442.1196563.155.319666661.1196758.853.4196857.650.9196959.847.2197056.856.1197168.552.4197282.9641973116.9103.61974139.4152.81975143147.41976134.8129.31977139.7132.81978167.6187.41979211.7242.91980271.2298.81981367.6367.71982413.8357.51983438.3421.81984580.5620.51985808.91257.819861082.11498.3198714701614.219881766.72055.1198919562199.919902985.82574.319913827.13398.719924676.34443.319935284.85986.2199410421.89960.1199512451.811048.1199612576.411557.4199715160.711806.5199815223.611626.1199916159.813736.5200020634.418638.8200122024.420159.2200226947.924430.3200336287.934195.6200449103.346435.8200562648.154273.7200677594.663376.9文案大全实用标准200793455.673284.62008100394.979526.5;run;procgplotdata=ti6_4;plotxt*year=1yt*year=2/overlay;symbol1c=blacki=joinv=none;symbol2c=redi=joinv=nonew=2l=2;run;procarimadata=ti6_4;identifyvar=xtstationarity=(adf=1);identifyvar=ytstationarity=(adf=1);run;procgplotdata=ti6_4;plotlnxt*year=1lnyt*year=2/overlay;plotdiflnx*year=1diflny*year=2;symbol1c=blacki=joinv=circle;symbol2c=redi=joinv=star;run;procarima;identifyvar=lnxt(1);estimatep=1;forecastlead=0id=yearout=out1;identifyvar=lnyt(1);estimatep=1;forecastlead=0id=yearout=out2;run;p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论