2022-2023学年陕西省榆林市府谷县中考冲刺卷数学试题含解析_第1页
2022-2023学年陕西省榆林市府谷县中考冲刺卷数学试题含解析_第2页
2022-2023学年陕西省榆林市府谷县中考冲刺卷数学试题含解析_第3页
2022-2023学年陕西省榆林市府谷县中考冲刺卷数学试题含解析_第4页
2022-2023学年陕西省榆林市府谷县中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为()A.25° B.30° C.35° D.40°2.下列说法正确的是()A.“买一张电影票,座位号为偶数”是必然事件B.若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则甲组数据比乙组数据稳定C.一组数据2,4,5,5,3,6的众数是5D.一组数据2,4,5,5,3,6的平均数是53.如图,空心圆柱体的左视图是()A. B. C. D.4.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.75.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是()A.40 B.45 C.51 D.566.若,则3(x-2)2A.﹣6B.6C.18D.307.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A.2m B.m C.3m D.6m8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<29.如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是()A.-2 B.2 C.-4 D.410.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b二、填空题(共7小题,每小题3分,满分21分)11.已知(x-ay)(x+ay),那么a=_______12.已知x+y=,xy=,则x2y+xy2的值为____.13.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.14.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.15.因式分解:4x2y﹣9y3=_____.16.在△ABC中,点D在边BC上,BD=2CD,,,那么=.17.两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为__________.三、解答题(共7小题,满分69分)18.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.19.(5分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.20.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)21.(10分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.22.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.23.(12分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.24.(14分)(5分)计算:(1

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.【详解】如图,连接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故选:B.【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、C【解析】

根据确定性事件、方差、众数以及平均数的定义进行解答即可.【详解】解:A、“买一张电影票,座位号为偶数”是随机事件,此选项错误;B、若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则乙组数据比甲组数据稳定,此选项错误;C、一组数据2,4,5,5,3,6的众数是5,此选项正确;D、一组数据2,4,5,5,3,6的平均数是,此选项错误;故选:C.【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【解析】

根据从左边看得到的图形是左视图,可得答案.【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C.【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.4、D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.5、C【解析】

解:根据定义,得∴解得:.故选C.6、B【解析】试题分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考点:整式的混合运算—化简求值;整体思想;条件求值.7、C【解析】

依据题意,三根木条的长度分别为xm,xm,(10-2x)m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为xm,xm,(10-2x)m,∵三根木条要组成三角形,∴x-x<10-2x<x+x,解得:.故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.8、B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.9、C【解析】

根据反比例函数k的几何意义,求出k的值即可解决问题【详解】解:∵过点P作PQ⊥x轴于点Q,△OPQ的面积为2,

∴||=2,

∵k<0,

∴k=-1.

故选:C.【点睛】本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、±4【解析】

根据平方差公式展开左边即可得出答案.【详解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案为:±4.【点睛】本题考查的平方差公式:.12、3【解析】分析:因式分解,把已知整体代入求解.详解:x2y+xy2=xy(x+y)=3.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.13、【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.14、【解析】

过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四边形EDFB=+=,即可得解:k=2S△OBF=.【详解】解:过点B作BF⊥OC于点F,由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=,∴S△OED=,S△OBF=S△OED+S四边形EDFB=+=,∴k=2S△OBF=.故答案为.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.15、y(2x+3y)(2x-3y)【解析】

直接提取公因式y,再利用平方差公式分解因式即可.【详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.16、【解析】

首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值.【详解】∵,,∴=-=-,∵BD=2CD,∴==,∴=+==.故答案为.17、【解析】

依据∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,进而得到△BFG∽△CHF,依据相似三角形的性质,即可得到=,即=,即可得到CH=.【详解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中点,∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案为.【点睛】本题主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.三、解答题(共7小题,满分69分)18、(1)方案1;B(5,0);;(2)3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x=3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,∴抛物线的解析式为:;(2)由题意:把代入,解得:=3.2,∴水面上涨的高度为3.2m.方案2:(1)点B的坐标为(10,0).设抛物线的解析式为:.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,∴抛物线的解析式为:;(2)由题意:把代入解得:=3.2,∴水面上涨的高度为3.2m.方案3:(1)点B的坐标为(5,),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:,把点B的坐标(5,),代入解析式可得:,∴抛物线的解析式为:;(2)由题意:把代入解得:=,∴水面上涨的高度为3.2m.19、(1)m=2;y=x+;(2)P点坐标是(﹣,).【解析】

(1)利用待定系数法求一次函数和反比例函数的解析式;

(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.【详解】解:(1)∵反比例函数的图象过点∴∵点B(﹣1,m)也在该反比例函数的图象上,∴﹣1•m=﹣2,∴m=2;设一次函数的解析式为y=kx+b,由y=kx+b的图象过点A,B(﹣1,2),则解得:∴一次函数的解析式为(2)连接PC、PD,如图,设∵△PCA和△PDB面积相等,∴解得:∴P点坐标是【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.20、17.3米.【解析】分析:过点C作于D,根据,得到,在中,解三角形即可得到河的宽度.详解:过点C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:这条河的宽是米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.21、(1);(2)P(小宇“略胜一筹”)=.【解析】分析:(1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为;(2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.详解:(1)P(摸出标有数字是3的球)=.(2)小宇和小静摸球的所有结果如下表所示:小静小宇4563(3,4)(3,5)(3,6)4(4,4)(4,5)(4,6)5(5,4)(5,5)(5,6)从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此P(小宇“略胜一筹”)=.点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.22、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】

(1)根据题意,本次接受调查的学生总人数为各个金额人数之和,用总概率减去其他金额的概率即可求得m值.(2)平均数为一组数据中所有数据之和再除以这组数据的个数;众数是在一组数据中出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论