2022-2023学年山东省青岛超银中学中考数学模拟试题含解析_第1页
2022-2023学年山东省青岛超银中学中考数学模拟试题含解析_第2页
2022-2023学年山东省青岛超银中学中考数学模拟试题含解析_第3页
2022-2023学年山东省青岛超银中学中考数学模拟试题含解析_第4页
2022-2023学年山东省青岛超银中学中考数学模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件2.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有()A.6个 B.7个 C.8个 D.9个3.下列计算正确的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p4.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分5.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD6.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A. B. C. D.7.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A. B.C. D.8.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.﹣10= B.+10=C.﹣10= D.+10=9.如图是二次函数的部分图象,由图象可知不等式的解集是()A. B. C.且 D.x<-1或x>510.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+ B.2+ C.2﹣1 D.2+1二、填空题(共7小题,每小题3分,满分21分)11.如图1,点P从扇形AOB的O点出发,沿O→A→B→0以1cm/s的速度匀速运动,图2是点P运动时,线段OP的长度y随时间x变化的关系图象,则扇形AOB中弦AB的长度为______cm.12.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)13.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.14.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.15.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.16.-3的倒数是___________17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.19.(5分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②20.(8分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点求m的值及C点坐标;在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由为抛物线上一点,它关于直线BC的对称点为Q当四边形PBQC为菱形时,求点P的坐标;点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由.21.(10分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:AB=DE22.(10分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与的大小.23.(12分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)在x轴上是否存在一点P,使得S△AOP=S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.24.(14分)已知抛物线y=ax2+c(a≠0).(1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;(2)若a>0,c=0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B两点,求证:直线AB恒经过定点(0,);(3)若a>0,c<0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.2、A【解析】

根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.3、D【解析】

直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.【详解】解:A.﹣5x﹣2x=﹣7x,故此选项错误;B.(a+3)2=a2+6a+9,故此选项错误;C.(﹣a3)2=a6,故此选项错误;D.a2p÷a﹣p=a3p,正确.故选D.【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键.4、D【解析】

解:总人数为6÷10%=60(人),则91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故选D.【点睛】本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.5、D【解析】

根据垂径定理判断即可.【详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故选D.【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6、A【解析】由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选A.7、A【解析】

此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【详解】解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为当C从D点运动到E点时,即时,.当A从D点运动到E点时,即时,,与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选A.【点睛】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.8、B【解析】

根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:+10=.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.9、D【解析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:由图象得:对称轴是x=2,其中一个点的坐标为(1,0),∴图象与x轴的另一个交点坐标为(-1,0).由图象可知:的解集即是y<0的解集,∴x<-1或x>1.故选D.10、D【解析】

设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有,解得.故选D.二、填空题(共7小题,每小题3分,满分21分)11、【解析】

由图2可以计算出OB的长度,然后利用OB=OA可以计算出通过弦AB的长度.【详解】由图2得通过OB所用的时间为s,则OB的长度为1×2=2cm,则通过弧AB的时间为s,则弧长AB为,利用弧长公式,得出∠AOB=120°,即可以算出AB为.【点睛】本题主要考查了从图中提取信息的能力和弧长公式的运用及转换,熟练运用公式是本题的解题关键.12、(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).13、【解析】试题解析:所以故答案为14、1【解析】

要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==1cm.故答案为1.考点:平面展开-最短路径问题.15、2或【解析】

分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;(2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.【详解】解:(1)当时,∵垂直平分,.(2)当时,过点A作于点,在与中,.故答案为或.【点睛】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.16、【解析】

乘积为1的两数互为相反数,即a的倒数即为,符号一致【详解】∵-3的倒数是∴答案是17、k>【解析】

由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案为k>.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.三、解答题(共7小题,满分69分)18、(1);(2)①;②【解析】

(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.【详解】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,根据题意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名.采访到种植C种树苗工人的概率为:=.【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.19、(1)0.3L;(2)在这种滴水状态下一天的滴水量为9.6L.【解析】

(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为W=kt+0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在这种滴水状态下一天的滴水量为9.6L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.20、,;存在,;或;当时,.【解析】

(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.【详解】解:(1)将B(4,0)代入,解得,m=4,∴二次函数解析式为,令x=0,得y=4,∴C(0,4);(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴,∴△=1﹣4b=0,∴b=4,∴,∴M(2,6);(3)①如图,∵点P在抛物线上,∴设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4),∴线段BC的垂直平分线的解析式为y=x,∴m=,∴m=,∴P(,)或P(,);②如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,∵点D在直线BC上,∴D(t,﹣t+4),∵PD=﹣(﹣t+4)=,BE+CF=4,∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=∵0<t<4,∴当t=2时,S四边形PBQC最大=1.考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.21、证明见解析.【解析】证明:∵AC//DF∴∠C=∠F在ΔACB和ΔDFE中∴△ABC≌△DEF(SAS)22、(1),;(2)当0<x<6时,kx+b<,当x>6时,kx+b>【解析】

(1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2),利用待定系数法求解即可求出解析式(2)由C(6,2)分析图形可知,当0<x<6时,kx+b<,当x>6时,kx+b>【详解】(1)S△AOB=OA•OB=1,∴OA=2,∴点A的坐标是(0,﹣2),∵B(1,0)∴∴∴y=x﹣2.当x=6时,y=×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=.(2)由C(6,2),观察图象可知:当0<x<6时,kx+b<,当x>6时,kx+b>.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标23、(1)y=;(1)(﹣1,0)或(1,0)【解析】

(1)把A的坐标代入反比例函数的表达式,即可求出答案;(1)求出∠A=60°,∠B=30°,求出线段OA和OB,求出△AOB的面积,根据已知S△AOPS△AOB,求出OP长,即可求出答案.【详解】(1)把A(,1)代入反比例函数y得:k=1,所以反比例函数的表达式为y;(1)∵A(,1),OA⊥AB,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论