湖南省长沙市裕农学校2022高一数学理下学期期末试题含解析_第1页
湖南省长沙市裕农学校2022高一数学理下学期期末试题含解析_第2页
湖南省长沙市裕农学校2022高一数学理下学期期末试题含解析_第3页
湖南省长沙市裕农学校2022高一数学理下学期期末试题含解析_第4页
湖南省长沙市裕农学校2022高一数学理下学期期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市裕农学校2022高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知数列满足,则等于A. B. C. D.参考答案:A2.已知△ABC中,a=,b=,B=60°,那么角A等于()A.135° B.90° C.45° D.30°参考答案:C【考点】HQ:正弦定理的应用.【分析】先根据正弦定理将题中所给数值代入求出sinA的值,进而求出A,再由a<b确定A、B的关系,进而可得答案.【解答】解析:由正弦定理得:,∴A=45°或135°∵a<b∴A<B∴A=45°故选C【点评】本题主要考查了正弦定理的应用.属基础题.正弦定理在解三角形中有着广泛的应用,要熟练掌握.3.已知角的终边过点,则(

)A.

B.

C.

D.参考答案:B略4.函数的图象是

参考答案:B略5.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,) B.(,1) C.(1,2) D.(2,+∞)参考答案:B【考点】函数的零点.【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:KOA=,数形结合可得<k<1,故选:B.6.给出以下命题:(1)函数f(x)=与函数g(x)=|x|是同一个函数;(2)函数f(x)=ax+1(a>0且a≠1)的图象恒过定点(0,1);(3)设指数函数f(x)的图象如图所示,若关于x的方程f(x)=有负数根,则实数m的取值范围是(1,+∞);(4)若f(x)=为奇函数,则f(f(﹣2))=﹣7;(5)设集合M={m|函数f(x)=x2﹣mx+2m的零点为整数,m∈R},则M的所有元素之和为15.其中所有正确命题的序号为()A.(1)(2)(3) B.(1)(3)(5) C.(2)(4)(5) D.(1)(3)(4)参考答案:D【考点】命题的真假判断与应用.【专题】转化思想;定义法;函数的性质及应用.【分析】(1)根据同一函数的定义和性质进行判断.(2)根据指数函数过定点的性质进行判断.(3)根据指数函数的图象和性质先求出函数的解析式,结合指数函数的取值范围进行求解即可.(4)根据函数奇偶性的性质,利用转化法进行求解.(5)根据根与系数之间的关系进行判断即可.【解答】解:(1)函数f(x)==|x|,函数g(x)=|x|,则两个函数是同一个函数;正确.(2)∵f(0)=a0+1=1+1=2,∴函数f(x)=ax+1(a>0且a≠1)的图象恒过定点(0,2);故(2)错误,(3)设指数函数f(x)的图象如图所示,则设f(x)=ax,由f(1)=4得a=4,即f(x)=4x,若关于x的方程f(x)=有负数根,则当x<0时,0<f(x)<1,由0<<1,即,即,得,即m>1,则实数m的取值范围(1,+∞);故(3)正确,(4)若f(x)=为奇函数,则f(0)=0,即1+t=0,即t=﹣1,即当x≥0时,f(x)=2x﹣1.则f(﹣2)=﹣f(2)=﹣(22﹣1)=﹣3,则f(f(﹣2))=f(﹣3)=﹣f(3)=﹣(23﹣1)=﹣7;故(4)正确,(5)∵函数f(x)=x2﹣mx+2m的零点为整数,∴判别式△=m2﹣8m≥0,解得m≥8或m≤0,x1+x2=m,x1x2=2m,则此时无法确定m的取值,即M的所有元素之和为15不正确,故(6)错误.故所有正确命题的序号为(1)(3)(4).故答案为:(1)(3)(4).【点评】本题主要考查与函数有关的命题的真假判断,涉及指数函数,函数的零点和概念,综合性较强,利用定义法和转化法是解决本题的关键.7.计算sin43°cos13°-cos43°sin13°的结果等于A.B.C.D.参考答案:A8.已知集合U={1,2,3,4,5,6},集合A={1,2,5},集合B={1,3,4},则(?UA)∩B=()A.{1} B.{3,4} C.{2,5} D.{1,2,3,4,5}参考答案:B【考点】交、并、补集的混合运算.【分析】由全集U及A,求出A的补集,找出A补集与B的交集即可.【解答】解:∵集合U={1,2,3,4,5,6},集合A={1,2,5},集合B={1,3,4},∴?UA={3,4,6},则(?UA)∩B={3,4}.故选:B.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.9.(3分)已知函数f(x)=,x∈R,则f()=() A. B. C. D. 参考答案:D考点: 函数的值.专题: 函数的性质及应用.分析: 利用函数的性质求解.解答: 函数f(x)=,x∈R,∴f()==.故选:D.点评: 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.10.如图,过点的直线与函数的图象交于两点,则等于(

)A.

B.

C.

D.

参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设g(x)=,则g(g())=

.参考答案:【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由分段函数的性质先求出g()=ln,再由对数性质求g(g())的值.【解答】解:∵g(x)=,∴g()=ln,g(g())=g(ln)==.故答案为:.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质和对数性质的合理运用.12.圆上的点到直线的距离的最小值

.参考答案:略13.(5分)下列命题中,正确的是

(1)若与是共线向量,与是共线向量,则与是共线向量;(2)已知=(sinθ,,=(1,),其中),则;(3)函数f(x)=tan与函数f(x)=是同一函数;(4)tan70°?cos10?(1﹣tan20°)=1.参考答案:(2)、(4)考点: 命题的真假判断与应用.专题: 简易逻辑.分析: (1)当=时,则与不一定是共线向量;(2)由),可得sinθ<0.利用数量积和平方关系=0,可得;(3)利用倍角公式可得:函数f(x)==,其中x≠kπ,k∈Z.对于函数f(x)=tan,再求出其定义域,比较即可得出.(4)利用商数关系、两角和差的正弦余弦公式、倍角公式、诱导公式即可得出.解答: (1)当=时,则与不一定是共线向量;(2)∵),∴sinθ<0.==sinθ+|sinθ|=sinθ﹣sinθ=0,∴,因此正确;(3)函数f(x)===,其中x≠kπ,k∈Z.对于函数f(x)=tan,其中(k∈Z),即x≠2kπ+π.其定义域不同,因此不是同一函数;(4)∵===.tan70°?cos10?(1﹣tan20°)===1,故正确.综上可知:只有(2)(4)正确.故答案为:(2)(4).点评: 本题综合考查了向量的共线定理、数量积运算与垂直的关系、商数关系、两角和差的正弦余弦公式、倍角公式、诱导公式等基础知识与基本技能方法,属于中档题.14.已知,,则3+4=

参考答案:略15.(3分)已知函数f(x)=(x≥0),记y=f﹣1(x)为其反函数,则f﹣1(2)=

.参考答案:4考点: 反函数.专题: 函数的性质及应用.分析: 求出原函数的反函数,然后直接取x=2求得f﹣1(2).解答: 由y=f(x)=(x≥0),得x=y2(y≥0),x,y互换得,y=x2(x≥0).∴f﹣1(x)=x2(x≥0).则f﹣1(2)=22=4.故答案为:4.点评: 求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域),是基础题.16.设,则P、Q的大小关系是

.参考答案:17.(5分)函数的单调递增区间为

.参考答案:(﹣∞,﹣1)考点: 复合函数的单调性.专题: 计算题.分析: 先求函数的定义域为{x|x>3或x<﹣1},要求函数的单调递增区间,只要求解函数t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减区间即可解答: 函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1)点评: 本题考查复合函数的单调性,对数函数的单调性,解本题时容易漏掉对函数的定义域的考虑,写成函数的单调增区间为:(﹣∞,1),是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知△ABC的角A,B,C所对的边分别为a,b,c,且.(Ⅰ)求角A的大小;(Ⅱ)若a=1,,求b+c的值.参考答案:【考点】HP:正弦定理;9R:平面向量数量积的运算.【分析】(Ⅰ)利用正弦定理把已知等式转化成角的正弦的关系式,整理求得tanA的值,进而求得A.(Ⅱ)利用向量积的性质求得bc的值,进而利用余弦定理求得b2+c2的值,最后用配方法求得答案.【解答】解:(Ⅰ)△ABC中,∵,∴sinAcosB+sinBsinA=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB∴sinAcosB+sinBsinA=sinAcosB+cosAsinB整理得sinA=cosA,即tanA=,∴A=.(Ⅱ)AB?AC?cosA=|?|=3,∴bc?=3,即bc=2,∵a2=b2+c2﹣2bccosA,即1=b2+c2﹣2?2?,∴b2+c2=1+6=7,∴b+c==.19.已知集合,,且,求由实数为元素所构成的集合.参考答案:解:

……2分

……4分

①.

合题意.

……6分

时,②时,有,得

……8分③时,有,得

……10分

……12分20.如图,在△ABC中,AC=10,,BC=6,D是边BC延长线上的一点,∠ADB=30°,求AD的长.参考答案:【考点】HR:余弦定理.【分析】利用余弦定理,求出∠ACB=60°,∠ACD=120°,在△ACD中,AC=10,∠ADB=30°,∠ACD=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论