湖南省岳阳市三明高中压伐门经营部2022年度高三数学理下学期期末试题含解析_第1页
湖南省岳阳市三明高中压伐门经营部2022年度高三数学理下学期期末试题含解析_第2页
湖南省岳阳市三明高中压伐门经营部2022年度高三数学理下学期期末试题含解析_第3页
湖南省岳阳市三明高中压伐门经营部2022年度高三数学理下学期期末试题含解析_第4页
湖南省岳阳市三明高中压伐门经营部2022年度高三数学理下学期期末试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省岳阳市三明高中压伐门经营部2022年度高三数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.当时,函数在同一坐标系内的大致图象是(

)参考答案:A略2.一个旅游景区的游览线路如图所示,某人从点P处进,Q点处出,沿图中线路游览A、B、C三个景点及沿途风景,则不童复(除交汇点O外)的不同游览线路有()种A.6

B.8

C.12

D.48参考答案:D3.已知A(xA,yA)是单位圆上(圆心在坐标原点O)任意一点,射线OA绕O点逆时针旋转30°到OB交单位圆于点B(xB,yB),则xA-yB的最大值为A.

B.

C.1

D.参考答案:C略4.若直线与不等式组,表示的平面区域有公共点,则实数的取值范围是

A.

B.

C.(1,9)

D.参考答案:【知识点】简单的线性规划.

E5A

解析:画出可行域,求得可行域的三个顶点A(2,1),B(5,2),C(3,4)而直线恒过定点P(0,-6),且斜率为,因为,所以由得,故选A.【思路点拨】:画出可行域,求得可行域的三个顶点,

确定直线过定点P(0,-6),求得直线PA、PB、PC的斜率,其中最小值,最大值,则由得的取值范围.5.过点作直线l与圆交于A,B两点,若P为A,B中点,则直线l的方程为(

)A. B.C. D.参考答案:D【分析】由点为的中点,等价于,根据垂直关系求得直线的斜率,再根据点斜式,即可求解直线的方程,得到答案.【详解】由题意,圆的圆心为,若点为的中点,等价于,则,所以直线的斜率为1,所以直线的方程为,即,故选D.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中熟练应用圆的弦的性质,以及直线的点斜式方程是解答的关键,着重考查了推理与运算能力,属于基础题.6.执行如图所示的程序框图,输出的k值为()A.6 B.8 C.10 D.12参考答案:B【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的k,S的值,可得当S=时不满足条件S≤,退出循环,输出k的值为8,即可得解.【解答】解:模拟程序的运行,可得S=0,k=0满足条件S≤,执行循环体,k=2,S=满足条件S≤,执行循环体,k=4,S=+满足条件S≤,执行循环体,k=6,S=++满足条件S≤,执行循环体,k=8,S=+++=不满足条件S≤,退出循环,输出k的值为8.故选:B.7.如图所示,若程序框图输出的所有实数对所对应的点都在函数的图象上,则(

)A.

B.

C.

D.参考答案:B8.若不等式组表示的区域,不等式表示的区域为,向区域均匀随机撒360颗芝麻,则落在区域中芝麻约为(

)A.114

B.10

C.150

D.50参考答案:A本题主要考查几何概型.不等式组表示的区域是一个三角形,其面积为,不等式表示的区域的面积即为圆

的面积,等于,区域和区域的相交部分是一个整圆去掉一个弓形,其面积为,所以落入区域中的概率为,所以向区域均匀随机撒360颗芝麻,则落在区域中芝麻约为,故选A.9.已知且,当时均有,则实数的取值范围是(

)A.

B.C.

D.参考答案:C略10.设为可导函数,且满足,则过曲线上点处的切线率为A.2

B.-1

C.1

D.-2参考答案:答案:B二、填空题:本大题共7小题,每小题4分,共28分11.一个梯形的直观图是一个底角为45°的等腰梯形,且梯形的面积为,则原梯形的面积为______________.

参考答案:4略12.某台风中心位于A港口东南方向的B处,且台风中心与A港口的距离为400千米.预计台风中心将以每小时40千米的速度向正北方向移动,离台风中心500千米的范围都会受到台风影响,则A港口从受到台风影响到影响结束,将持续小时.参考答案:15【考点】解三角形的实际应用.【分析】过A作AC垂直BC,垂足为点C,则BC=AC=400千米,在BC线上取点D使得AD=500千米进而根据勾股定理求得DC,进而乘以2,再除以速度即是A港口受到台风影响的时间.【解答】解:由题意AB=400千米,过A作AC垂直BC,垂足为点C,则BC=AC=400千米台风中心500千米的范围都会受到台风影响所以在BC线上取点D使得AD=500千米因为AC=400千米,AD=500千米∠DCA是直角根据勾股定理DC=300千米因为500千米的范围内都会受到台风影响所以影响距离是300×2=600千米T==15(小时)故答案为:15.13.一个四棱锥的三视图如图所示(单位:cm),这个四棱锥的体积为

cm3.参考答案:72【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,代入棱锥体积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,其底面面积S=6×6=36cm2,高h=6cm,故棱锥的体积V==72cm3,故答案为:72【点评】本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(Ⅰ)b2012是数列{an}中的第______项;(Ⅱ)b2k-1=______。(用k表示)17.参考答案:(Ⅰ)5030;(Ⅱ)由以上规律可知三角形数1,3,6,10,…,的一个通项公式为,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故.从而由上述规律可猜想:(为正整数),,故,即是数列中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.15.(选修4-4:坐标系与参数方程)在极坐标系中,直线与曲线相交于A、B两点,O为极点,则∠AOB=

.参考答案:16.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员i123456三分球个数下图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填

,输出的=

.参考答案:

17.向量,在正方形网格中的位置如图所示,设向量=﹣λ,若⊥,则实数λ=

.参考答案:【考点】平面向量数量积的运算.【专题】计算题;平面向量及应用.【分析】由向量垂直的条件得到(﹣λ)?=0,求出向量AB,AC的坐标和模,再由数量积的坐标公式,即可求出实数λ的值.【解答】解:∵向量=﹣λ,⊥,∴=0,即(﹣λ)?=0,∴=λ∵,,∴=6,||=2,∴λ=.故答案为:.【点评】本题考查向量的数量积的坐标表示、向量垂直的条件、向量的模,考查基本的运算能力,是一道基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(14分)(2012?茂名一模)已知函数f(x)=ln(ex+a)(a为常数)为实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[﹣1,1]上的减函数.(1)求a的值;(2)若g(x)≤t2+λt+1在x∈[﹣1,1]及λ所在的取值范围上恒成立,求t的取值范围;(3)讨论关于x的方程的根的个数.参考答案:考点: 根的存在性及根的个数判断;函数奇偶性的性质;函数恒成立问题.

专题: 计算题.分析: (1)因为定义域是实数集R,直接利用奇函数定义域内有0,则f(﹣0)=﹣f(0)即f(0)=0,即可求a的值;(2)先利用函数g(x)的导函数g'(x)=λ+cosx≤0在[﹣1,1]上恒成立,求出λ的取值范围以及得到g(x)的最大值g(﹣1)=﹣1﹣sin1;然后把g(x)≤t2+λt+1在x∈[﹣1,1]上恒成立转化为﹣λ﹣sin1≤t2+λt+1(λ≤﹣1),整理得(t+1)λ+t2+sin1+1≥0(λ≤﹣1)恒成立,再利用一次函数的思想方法求解即可.(3)先把方程转化为=x2﹣2ex+m,令F(x)=(x>0),G(x)=x2﹣2ex+m

(x>0),再利用导函数分别求出两个函数的单调区间,进而得到两个函数的最值,比较其最值即可得出结论.解答: 解:(1)因为函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,所以f(﹣0)=﹣f(0)即f(0)=0,则ln(e0+a)=0解得a=0,a=0时,f(x)=x是实数集R上的奇函数;(2)由(1)得f(x)=x所以g(x)=λx+sinx,g'(x)=λ+cosx,因为g(x)在[﹣1,1]上单调递减,∴g'(x)=λ+cosx≤0

在[﹣1,1]上恒成立,∴λ≤﹣1,g(x)max=g(﹣1)=﹣λ﹣sin1,只需﹣λ﹣sin1≤t2+λt+1(λ≤﹣1),∴(t+1)λ+t2+sin1+1≥0(λ≤﹣1)恒成立,令h(λ)=(t+1)+t2+sin1+1(λ≤﹣1)则,解得t≤﹣1(3)由(1)得f(x)=x∴方程转化为=x2﹣2ex+m,令F(x)=(x>0),G(x)=x2﹣2ex+m

(x>0),(8分)∵F'(x)=,令F'(x)=0,即=0,得x=e当x∈(0,e)时,F'(x)>0,∴F(x)在(0,e)上为增函数;当x∈(e,+∞)时,F'(x)<0,F(x)在(e,+∞)上为减函数;(9分)当x=e时,F(x)max=F(e)=(10分)而G(x)=(x﹣e)2+m﹣e2

(x>0)∴G(x)在(0,e)上为减函数,在(e,+∞)上为增函数;(11分)当x=e时,G(x)min=m﹣e2(12分)∴当m﹣e2>,即m>e2+时,方程无解;当m﹣e2=,即m=e2+时,方程有一个根;当m﹣e2<,即m<e2+时,方程有两个根;(14分)点评: 本题主要考查函数奇偶性的性质,函数恒成立问题以及导数在最大值、最小值问题中的应用,是对知识的综合考查,属于难题.在涉及到奇函数定义域内有0时,一般利用结论f(0)=0来作题.19.(本小题满分12分)已知的两边长分别为,,且O为外接圆的圆心.(注:,)(1)若外接圆O的半径为,且角B为钝角,求BC边的长;(2)求的值.

参考答案:解答:(1)由正弦定理有,

∴,∴,,

……3分

且B为钝角,∴,,

∴,

又,∴;

……6分(2)由已知,∴,

……8分

同理,∴,…………10分

两式相减得,即,∴.

……12分略20.已知曲线C1的极坐标方程为,以极点O为直角坐标原点,以极轴为x轴的正半轴建立平面直角坐标系xOy,将曲线C1向左平移2个单位长度,再将得到的曲线上的每一个点的横坐标缩短为原来的,纵坐标保持不变,得到曲线C2(1)求曲线C2的直角坐标方程;(2)已知直线l的参数方程为,(t为参数),点Q为曲线C2上的动点,求点Q到直线l距离的最大值.参考答案:(1)(2)【分析】(1)先化为,利用变换得即可;(2)设,得求最大值即可.【详解】(1)由得,所以曲线的方程为,

设曲线上任意一点,变换后对应的点为,则即

代入曲线的方程中,整理得,所以曲线的直角坐标方程为;(2)设,则到直线:的距离为,其中为锐角,且,当时,取得最大值为,所以点到直线l距离的最大值为.【点睛】本题考查极坐标与直角坐标互化,图像变换,点到直线距离,熟记图像变换原则,熟练计算点线距是关键,是中档题.21.在平面直角坐标系xOy中,已知F1、F2分别为椭圆的左、右焦点,且椭圆C经过点和点,其中e为椭圆C的离心率.(1)求椭圆C的标准方程;(2)过点A的直线l交椭圆C于另一点B,点M在直线l上,且,若,求直线l的斜率.参考答案:(1);(2)【分析】(1)将点和点代入椭圆方程计算得到答案.(2)设直线的斜率为,直线的方程为,联立方程解得点坐标为,点坐标为,根据计算得到答案.详解】(1)∵椭圆经过点和点,∴,∴解得,,,∴椭圆的方程为.(2)设直线的斜率为,∴直线的方程为,∵由方程组,∴消去,整理得,∴解得或,∴点坐标为.由知,点在的中垂线上,又∵在直线上,∴点坐标为,∴,,若∵,∴,∴解得,∴,∴直线的斜率.【点睛】本题考查了求椭圆方程,直线的斜率,意在考查学生的计算能力和综合应用能力.22.(本题满分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论