![山东省济宁市中学2022高一数学理期末试题含解析_第1页](http://file4.renrendoc.com/view/f9eba79f8c262d7a7463bb3f63cd39c4/f9eba79f8c262d7a7463bb3f63cd39c41.gif)
![山东省济宁市中学2022高一数学理期末试题含解析_第2页](http://file4.renrendoc.com/view/f9eba79f8c262d7a7463bb3f63cd39c4/f9eba79f8c262d7a7463bb3f63cd39c42.gif)
![山东省济宁市中学2022高一数学理期末试题含解析_第3页](http://file4.renrendoc.com/view/f9eba79f8c262d7a7463bb3f63cd39c4/f9eba79f8c262d7a7463bb3f63cd39c43.gif)
![山东省济宁市中学2022高一数学理期末试题含解析_第4页](http://file4.renrendoc.com/view/f9eba79f8c262d7a7463bb3f63cd39c4/f9eba79f8c262d7a7463bb3f63cd39c44.gif)
![山东省济宁市中学2022高一数学理期末试题含解析_第5页](http://file4.renrendoc.com/view/f9eba79f8c262d7a7463bb3f63cd39c4/f9eba79f8c262d7a7463bb3f63cd39c45.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市中学2022高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45° C.60° D.90°参考答案:C【考点】异面直线及其所成的角.【分析】本题求解宜用向量法来做,以D为坐标原点,建立空间坐标系,求出两直线的方向向量,利用数量积公式求夹角即可【解答】解:如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系,∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1∴A(1,0,0),P(0,0,1),B(1,1,0),D(0,0,0)∴=(1,0,﹣1),=(﹣1,﹣1,0)∴cosθ==故两向量夹角的余弦值为,即两直线PA与BD所成角的度数为60°.故选C【点评】本题考查异面直线所角的求法,由于本题中所给的背景建立空间坐标系方便,故采取了向量法求两直线所成角的度数,从解题过程可以看出,此法的优点是不用作辅助线,大大降低了思维难度.2.若数列{an}的通项公式是an=(﹣1)n(3n﹣1),前n项和为Sn,则S11等于()A.﹣187 B.﹣2 C.﹣32 D.﹣17参考答案:D【考点】8E:数列的求和.【分析】an=(﹣1)n(3n﹣1),可得a1=﹣2,a2k+1+a2k=﹣(6k+2)+(6k﹣1)=﹣3.利用分组求和即可得出.【解答】解:an=(﹣1)n(3n﹣1),∴a1=﹣2,a2k+1+a2k=﹣(6k+2)+(6k﹣1)=﹣3.则S11=a1+(a2+a3)+…+(a10+a11)=﹣2﹣3×5=﹣17.故选:D.3.函数的周期、振幅、初相分别是(
)A.
B.
C.
D.参考答案:D试题分析:,(A>0.ω>0),A叫做振幅,周期,φ叫初相
所以周期T=4π,振幅为2,初相.考点:三角函数公式含义.4.现有60瓶矿泉水,编号从1至60,若从中抽取6瓶检验,用系统抽样方法确定所抽的编号可能是
(
)A.3,13,23,33,43,53
B.2,14,26,28,42,56C.5,8,31,36,48,54
D.5,10,15,20,25,30参考答案:A略5.为了得到函数的图象,只需把函数的图象(
)A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度参考答案:A【分析】根据,因此只需把函数的图象向左平移个单位长度。【详解】因为,所以只需把函数图象向左平移个单位长度即可得,选A.6.已知正方体的不在同一表面的两个顶点A(﹣1,2,﹣1),B(3,﹣2,3),则正方体的棱长等于() A.4 B.2 C. D.2参考答案:A【考点】球内接多面体. 【专题】计算题;转化思想;数学模型法;立体几何. 【分析】先根据题意可知AB是正方体的体对角线,利用空间两点的距离公式求出AB,再由正方体体对角线的平方等于棱长平方的3倍求得正方体的棱长. 【解答】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=, 设正方体的棱长为x, 则,解得x=4. ∴正方体的棱长为4, 故选:A. 【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.7.已知AB∥PQ,BC∥QR,∠ABC=30°,则∠PQR等于() A.30° B.300或1500 C.1500 D.以上都不对参考答案:B【考点】平行公理. 【专题】规律型;空间位置关系与距离. 【分析】由题意AB∥PQ,BC∥QR,∠ABC=30°,由平行公理知,∠PQR与∠ABC相等或互补,答案易得. 【解答】解:由题意知AB∥PQ,BC∥QR,∠ABC=30°, 根据空间平行公理知,一个角的两边分别平行于另一个角的两边,则这两个角相等或互补 所以∠PQR等于30°或150° 故选:B. 【点评】本题考查空间图形的公理,记忆“在空间中一个角的两边分别平行于另一个角的两边,则这两个角相等或互补”这一结论,是解题的关键,本题是基本概念题,规律型.8.如图中的阴影部分表示的集合是()A.?∪M∩N B.M∪?∪N C.M∩?∪N D.?∪M∪N参考答案:B【考点】Venn图表达集合的关系及运算.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于M或不属于N的元素构成,所以用集合表示为M∪?∪N.故选B.9.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有()A.2个或3个 B.1个或3个 C.1个或4个 D.4个或3个参考答案:C【考点】LJ:平面的基本性质及推论.【分析】当空间四点确定的两条直线平行或相交时,则四个点确定1个平面;当四点确定的两条直线异面时,四点不共面,则这四个点确定4个平面.【解答】解:根据题意知,空间四点确定的两条直线的位置关系有两种:当空间四点确定的两条直线平行或相交时,则四个点确定1个平面;当四点确定的两条直线异面时,四点不共面,如三棱锥的顶点和底面上的顶点,则这四个点确定4个平面.故选:C.10.已知等差数列{}中,,则(
)A、15
B、30
C、31
D、64参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,得到函数g(x)的图象,则函数g(x)的解析式为
参考答案:12.在直角△ABC中,,,,M是△ABC内一点,且,若,则的最大值______.参考答案:由已知可得.【点睛】本题主要考查向量的数量积、向量的分解和基本不等式,涉及数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力和运算求解能力,具有一定的综合性,属于中档题型.将已知条件两边平方得.13.给出定义:若(其中m为整数),则m叫做离实数最近的整数,记作{}=m.在此基础上给出下列关于的函数的四个命题:
①函数的定义域为R,值域为[0,];
②函数在[-,]上是增函数;
③函数是偶函数;
④函数的图象关于直线对称.其中正确命题的序号是
。参考答案:略14.设函数,若对任意,都有成立,则的最小值为______.参考答案:2【分析】由题意可得,的最小值等于函数的半个周期,由此得到答案.【详解】由题意可得是函数的最小值,是函数的最大值,故的最小值等于函数的半个周期,为T?,故答案为2.15.(2016秋?建邺区校级期中)已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是.参考答案:(﹣3.+∞)【考点】函数恒成立问题.【专题】转化思想;综合法;函数的性质及应用.【分析】通过判定函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增、奇函数,脱掉”f“,转化为恒成立问题,分离参数求解.【解答】解:∵函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增,又∵f(﹣x)=﹣(2x﹣2﹣x)=﹣f(x),故f(x)是奇函数,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,?对任意的x∈[1,3],不等式f(x2+tx)>f(﹣4+x)恒成立,?对任意的x∈[1,3],x2+(t﹣1)x+4>0?(t﹣1)x>﹣x2﹣4?t﹣1>﹣(x+,∵,∴t﹣1>﹣4,即t>﹣3.故答案为:(﹣3.+∞)【点评】本题考查了函数的单调性、奇函数,恒成立问题,分离参数法,属于中档题.16.设函数f(x)=,则不等式f(6﹣x2)>f(x)的解集为
.参考答案:(﹣3,2)【考点】5B:分段函数的应用.【分析】判断函数的单调性,利用单调性的性质列出不等式,求解即可.【解答】解:f(x)=x3﹣+1,x≥1时函数是增函数,f(1)=1.所以函数f(x)在R上单调递增,则不等式f(6﹣x2)>f(x)等价于6﹣x2>x,解得(﹣3,2).故答案为:(﹣3,2).17.将一个长、宽分别是的铁皮的四角切去相同的正方形,然后折成一个无盖的长方体的盒子,若这个长方体的外接球的体积存在最小值,则的取值范围是_________.参考答案:长方体的外接球的直径是长方体的体对角线,故只需考虑体对角线有最小值即可,设切去的正方形边长为,长方体的体对角线为,则,要在区间内有最小值,则二次函数的对称轴必要此区间内,即且,令代入得,故.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有>0成立.(Ⅰ)判断f(x)在[﹣1,1]上的单调性,并证明;(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);(Ⅲ)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.参考答案:【考点】函数恒成立问题.【分析】(Ⅰ)任取x1,x2∈[﹣1,1],且x1<x2,利用函数的单调性的定义证明f(x)在[﹣1,1]上单调递增.(Ⅱ)利用f(x)在[﹣1,1]上单调递增,列出不等式组,即可求出不等式的解集.(Ⅲ)问题转化为m2﹣2am≥0,对a∈[﹣1,1]恒成立,通过①若m=0,②若m≠0,分类讨论,判断求解即可.【解答】解:(Ⅰ)任取x1,x2∈[﹣1,1],且x1<x2,则﹣x2∈[﹣1,1],∵f(x)为奇函数,∴f(x1)﹣f(x2)=f(x1)+f(﹣x2)=?(x1﹣x2),…由已知得>0,x1﹣x2<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴f(x)在[﹣1,1]上单调递增.…(Ⅱ)∵f(x)在[﹣1,1]上单调递增,∴…∴不等式的解集为.…(Ⅲ)∵f(1)=1,f(x)在[﹣1,1]上单调递增.∴在[﹣1,1]上,f(x)≤1.问题转化为m2﹣2am+1≥1,即m2﹣2am≥0,对a∈[﹣1,1]恒成立.…下面来求m的取值范围.设g(a)=﹣2m?a+m2≥0.①若m=0,则g(a)=0≥0,对a∈[﹣1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[﹣1,1]恒成立,必须g(﹣1)≥0且g(1)≥0,∴m≤﹣2或m≥2.综上,m=0或m≤﹣2或m≥2…19.(本小题满分12分)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人数抽取人数A18xB362C54y(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.参考答案:解:(1)由题意可得,==,所以x=1,y=3.(2)记从高校B抽取的2人为b1,b2,从高校C抽取的3人为c1,c2,c3,则从高校B,C抽取的5人中选2人作专题发言的基本事件有(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共10种.设选中的2人都来自高校C的事件为X,则X包含的基本事件有(c1,c2),(c1,c3),(c2,c3),共3种,因此P(X)=.故选中的2人都来自高校C的概率为.略20.对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[],则把()叫闭函数.(1)求闭函数符合条件②的区间[];(2)判断函数是否为闭函数?并说明理由;(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.参考答案:
解:(1)由题意,在[]上递减,则……………2分解得所以,所求的区间为[-1,1]
……………4分(2)取则,即不是上的减函数。取,即不是上的增函数……………7分所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数。……8分(3)若是闭函数,则存在区间[],在区间[]上,函数的值域为[],即,为方程的两个实根,…9分即方程有两个不等的实根。………10分当时,有,解得。………12分ks5u当时,有,无解。………14分ks5u
综上所述,。………15分略21.(本小题满分13分)在中,分别是内角的对边,且,,若.(1)求的大小;(2)设为的面积,求的最大值及此时的值.参考答案:22.某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据整理后,绘制出频率分布直方图如图所示,其中样本数据分组区间为[50,60),[60,70),[70,80),[80,90),[90,100].(1)试估计全市学生参加汉字听写考试的平均成绩;(2)如果从参加本次考试的同学中随机选取1名同学,求这名同学考试成绩在80分以上的概率.参考答案:考点:列举法计算基本事件数及事件发生的概率;频率分布直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中华书局版历史七年级下册第3课《盛唐气象》听课评课记录
- 小学一年级数学备课组学期工作总结
- 高中学生暑假学习计划
- 个人年度工作计划目标
- 新学期学习计划总结文本
- 单位房屋的出租合同范本
- 乐山师范学院《传热与传输原理》2023-2024学年第二学期期末试卷
- 保洁开荒合同范本
- 黄山职业技术学院《建筑力学下》2023-2024学年第二学期期末试卷
- 无产权房屋租赁合同范本
- 早点出租承包合同(2篇)
- 施工现场人力资源施工机具材料设备等管理计划
- 第八章《运动和力》达标测试卷(含答案)2024-2025学年度人教版物理八年级下册
- 民办幼儿园务工作计划
- 2025年华侨港澳台生联招考试高考地理试卷试题(含答案详解)
- 内镜室院感知识培训课件
- 2025年市场拓展工作计划
- 2025年八省联考云南高考生物试卷真题答案详解(精校打印)
- 2020-2024年五年高考历史真题分类汇编(山东)专题15 中国古代史(原卷版)
- 中国革命战争的战略问题(全文)
- 《数学归纳法在中学解题中的应用研究》9000字(论文)
评论
0/150
提交评论