版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
发展空间观念的序列及案例FAZHANXUESHENGDEKONGJIANGUANNIANDEXULIEJIANLItangcaibin@唐彩斌123宏观指导思想是正确的中观教学理念是认同的微观教学操作是困难的课程改革近十年,您是否越来越觉得……
B重点教学灵活思维A重点教学机械技能数学教学
D思维需大量训练C思维有序训练E教师告诉怎么做F学生自主思考?课程标准2011版
从双基到四基双基:基础知识,基本技能。四基:基础知识、基本技能、
基本活动经验,基本思想;
从两能到四能分析问题;解决问题;发现问题;提出问题;
从6大核心到10大核心数感符号感空间观念统计观念推理能力应用意识
10大核心素养数感符号意识空间观念几何直观数据分析观念运算能力推理能力应用意识创新意识模型思想课堂作业在听讲的过程中,能不能结合自己的实践来作补充。可以补充一个观点。也可以补充一个案例。也可能是按照要求来完成仿真练习。请不要过于纠结反问自己“为什么我来说呢”这样会不会……这里需要我们自由安全地表达。关注空间观念空间观念部分综述传统三大能力之一:空间想象能力;空间观念与空间想象力的关系?空间想象能力是对几何表象加工改造,创造新的形象。对学生来说,这种要求太高了,所以义务教育阶段教学大纲中只提出培养学生的空间观念。(曹才翰)空间观念综述空间观念包括三个方面:(1)实物几何化;(2)由基本图形寻找出基本元素及其关系;(3)由比较复杂的图形分解出简单的、基本的图形,能根据条件做出立体模型或画出图形。空间观念不仅是“观念”,还是数学课程里新的内容、题材和呈现方式。(李玉龙、朱维宗)空间观念综述对于学生来说,发展牢固的空间观念,掌握几何的概念和语言,不仅可以较好地为学习数和度量概念做准备,还可以促进其他数学课程的进一步学习。(刘晓玫)空间观念综述性别差异国内外研究结果不同。大多数西方研究成果表明:男性的空间观念有优势,这种优势随着年龄的增长而增加。男生的优势随着年龄的增长缩小并消失。(许燕、张厚粲,2000)采用适当方式描述物体间的位置关系的能力,采用适当方法确定物体位置的能力,利用直观形象描述和分析问题的能力;图形变换能力;在二维和三维图形和它们的表征之间进行转换的能力;采用适当的方法进行空间测量的能力;对空间形式及其符号进行想象、形成空间概念及空间关系的能力等。(华国栋,2008)空间观念:空间观念能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。备注:“义务教育数学课程标准”(实验稿),北京师范大学出版社。空间观念根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。备注:“义务教育数学课程标准”2011版,北京师范大学出版社。观点与启示
GUANDIANYUQISHI对于概念的界定,一方面我们尽可能多地知晓已有的研究与结论,同时我们也不要拘泥于之前的某一项研究的结论。更不必试图引用所谓权威或官方的文字来佐证自己的认识。实践才是检验理念的唯一标准。不知您是否也这样:我们通常没有过多的精力来搞清楚是什么空间观念?而是很想知道到底怎么做才能发展学生的空间观念?空间观念的课程序列教学的过程,就像是带着孩子爬楼梯的过程,只要有合适的阶梯,学生终究是会到达终点的。观念的形成需要合适的序列知识的序列编排就像人体基因排序一样具有攻坚意义。我们坚信每一个孩子都会进步,只是需要寻找适合他的学习材料。不是零散的“拼盘”,是整体的“金字塔”。
课程不是拼盘,是金字塔形成空间观念需要基本内容与专项材料(1)图形的认识;(2)图形的测量:(3)图形的运动变换;(4)图形的方位:(1)图形的转换;(2)图形的分解;(3)图形的组合;(4)图形的辨认;(5)图形的概括;(6)图形的推理;(7)图形计数;(8)多连块拼图;(9)找隐蔽图形;(10)图形的展开和折叠;(张天孝,2012)原来8项,单列2项图形之间的转换生活的经验生活的经验拍照:从三维到二维,从立体到平面。用长方形折出正方形,用正方形剪出一样大的三角形等。图形之间的转换图形之间的转换平面图形之间的转换。转换:图形特征的再巩固。来源:人教版配套五年级暑假作业思考题:一个梯形,如果上底增加4cm,就变成一个平行四边形;如果上底减少3cm,就成了一个三角形,这时面积比原来减少了7.5平方厘米。原来这个梯形的面积是多少平方厘米?能力培养:不为考试,赢在考试。图形之间的转换一维、二维和三维之间的转换。在下列图形中,哪两条线段是相互平行的?哪两条线段是相互垂直的?一维和二维之间的转换四边形的对边关系ABCD在下列图形中,哪两条线段是相互平行的?哪两条线段是相互垂直的?七巧板长方体二维和三维之间的转换
一条线段长5厘米,以每秒10厘米的速度向右平移,3秒钟后,线段扫过的部分的面积是多少?一维和二维之间的转换哪个长方体礼盒装得多?1单位:cm1088610610810686序号1长宽高体积1086480哪个长方体礼盒装得多?2单位:cm序号2长
宽
高
体积
20105100020101052010105158哪个长方体礼盒装得多?3单位:cm155序号3长
宽
高
体积
1585600哪个长方体礼盒装得多?4单位:cm815815序号4长
宽
高
体积
158?
碾路机;
二维和三维之间的转换游泳池;四棵树,怎样栽,使得任两棵树之间距离相等?二维和三维之间的转换观点与启示
GUANDIANYUQISHI学习开始的地方不一定在课堂?重视日常生活中图形与图形之间的转换,这些基本的活动经验积累为学校课堂数学学习是奠定基础。转换并不一定是在一个维度上?一维、二维和三维之间的相互转换,恰是发展学生空间观念的有益举措。您是否想起了相关的案例?图形的分解与组合图形的分解有一块长4米,宽3米的园地,现要在园地上辟出一个花圃,使花圃的面积是原园地面积的一半,问如何设计?(日本开放题):图形的分解:图形的分解:2等分3等分4等分7等分图形的组合:图形的组合:图形的组合:
七巧板拼平行四边形图形的组合:七巧板拼正方形生活中的七巧板数学老师家摆上一个,是否更能体现自己的学科气质?用七巧板拼寓言《自相矛盾》二连方三连方图形的组合源自50年代美国多连块图形的组合从三连方到四连方是怎么构造成的?五连方;六连方。分别有几个呢?五连方12种,大都能用字母表述形状。六连方35个不同的六连方,能拼成正方体的有11种。图形的分解与组合观点与启示
GUANDIANYUQISHI图形的分与合不只是图形的拼与拆?图形的分解,并不仅仅是图形外形的简单分隔,而是相关数学知识和技能的应用。图形的组合中,注重我国传统益智素材七巧板的活动,也吸收西方的益智素材几连块的应用。作业不一定是当天完成的?时间长短不是问题,好题的起点低,人人可参与;开放度大,不同的人不同要求,做全对人人都有挑战。图形计数图形计数的序列数点:数线段:数角;数图形:数方块数线段和角下图中有多少条线段?数线段和角平面上的5个点,每3点都不在同一条直线上,各点连接,一共有多少条线段?数图形下图中有多少个正方形和三角形?英国:数学大师俱乐部数图形下面这个图形中有多少种图形,每种图形各有多少个?(1982年,张德琇)数立方体的个数下图的长方体是由1立方厘米的小正方体摆成的,它的体积是多少立方厘米?数立方体的个数
PISA样题苏森要搭建左图所示的几何体,需要多少个立方块?那么搭建右图所示的几何体呢?利用小立方块搭建右图所示的几何体,如果允许内部有空洞,而外表上看起来还是这样的大立方体,至少需要多少个小立方体?.将边长为3和4的两个正方体的表面刷上红色的漆,再将它分割成边长为1的小正方体。探求满足下面条件的小正方体的数量规律。(1)边长为3的正方体,三面、两面、一面有红颜色的小正方体各有多少个?(2)边长为4的正方体呢?边长分别改为5和6,结果如何?你能发现什么规律?案例:分类计数观点与启示
GUANDIANYUQISHI操作不一定用手?一个一个数小立方块,那只是一个数数的问题,针对不完整的立体图形,要算出总数,就需要考量学生的空间想象能力。在数的过程中,除了实际的数,更有头脑中的表象地数,切勿一味实物操作;有时远距离的操作比近距离操作更有挑战,因为需要学生更为精准地数学表达,这也是一种能力。图形的概括图形属性的概括先从已知的几个图形中概括出特点,在把下面符合特征的图归入上列图中。⑤①②③④羊毛衫上的图案认识图形:从多个图形中概括中共同特点。拉门生活中的现象。日本的三菱汽车标志生活中的现象。地砖生活中的现象。色香味俱全,还有“形”生活中的现象。美国空中跳伞新记录生活中的现象。生活中的现象。法国飞行表演巴西国旗生活中的现象。法国巴黎卢浮宫玻璃金字塔:600个菱形生活中的现象。德国慕尼黑安联球场:2874个菱形生活中的现象。图形共同特点?S=c×r÷2S=(a+b)h÷2S=ah÷2S=ahS=ab圆形梯形三角形平行四边形长方形图形的概括:面积公式的概括V=Sh图形的概括:体积公式的概括观点与启示
GUANDIANYUQISHI公式记得多不意味着本领强?(类似:数字大不一定题目难,文章长不意味着价值大)华老的话“把厚书读薄”,不知用在数学概括上,算否牵强;无论怎样,注重概括是数学思维的本质特点;图形的推理烧开水的一般过程是:在水壶里放水,点燃燃气灶,再把水壶放到燃气灶上。如果有一天,在你面前放着水壶,水壶里已经装了水,那么又应当怎么做呢?物理学家说:点燃燃气灶,再把水壶放到燃气灶上。可是数学家却不会这样想,他们常常说:倒出水壶里的水,然后按照一般过程烧。数学家的思维:把后一问题转化成先前的问题。
案例:烧开水。图形面积的推导。图形推理“我珍视类比胜于任何别的东西,它是我最可信赖的老师,它能揭开自然界的秘密,在几何学中它应该是最不容忽视的”。
珍视类比。德国数学家开普勒长方形面积的推导
长方体体积的推导;类比。推理的严谨:平行四边形的面积推导平行四边形的面积推导一般的特殊的为了转化成长方形,所以要沿着高剪。是不是不同形状的平行四边形都可以沿高剪呢?所以需要提出特殊的情况。为什么要介绍平移这种方法呢?(参见傅种孙数学教育文选,人民教育出版社)平行四边形的面积再多的白羊也不能证明所有的羊都是白的,而只要一只黑羊就能证明所有的羊都是白的这个理论是错误的。认识可能性我们常常抛硬币,掷骰子,用来说明等可能性的事件,如果用啤酒瓶的盖来说明这不是等可能性的,对等可能的事件的理解反而更深刻。反例的作用观点与启示
GUANDIANYUQISHI只有提供越丰富的材料,才便于学生概括。妥善处理特殊的情况,如果连特殊的情况也满足一般的规律,学生对发现的规律会更坚定。看到屏幕上的语言,您想到了什么图?现场体验一个角;一个三角形。三角形中的直角三角形、钝角三角形、锐角三角形,哪一个最特殊?是不是所有三角形都能作高?锐角三角形一作高,是不是分成了两个直角三角形?钝角三角形呢?任何一个三角形一作高,就能把它转化成2个直角三角形;如果知道直角三角形面积计算方法,是否可以说任何三角形的面积都会了?三角形中的直角三角形、钝角三角形、锐角三角形,哪一个最一般?《三角形的面积》推理思路S=(1/2h)aS=(1/2a)hS=1/2(ah)三角形面积公式图形的推理:让不完全归纳更完全;三角形的内角和三角形的内角和是180度?三角形的内角和是180,四边形呢?为什么只学内角不学外角?三角形的外角和是360,四边形呢?一般的多边形呢?
三角形的外角和
六边形的外角和图形的推理:让不完全归纳更完全;五角星中的黄金比欣赏:奇妙的五点共圆推理的严谨:车轮为什么是圆的?阴影部分的面积怎样计算?图形的组合与推理:阴影部分的面积怎样计算?图形的组合与推理:绿色和蓝色的面积哪个大?图形的组合与推理:图形的面积推理:
红色与绿色的面积哪个大?下图中,长方形的长和宽分别为40厘米和25厘米,一个直径为4厘米的圆沿长方形内壁无滑动地滚动一周,求圆滚过的部分的面积。观点与启示
GUANDIANYUQISHI根据已知的条件,发现内在的关系和存在的规律,推导出新的结论,有时结论不一定完全正确,但可能蕴含价值,教学需要多遵循儿童的“话语体系”;“蹲”下来倾听孩子,不只是姿势,更是儿童的逻辑;数学是严谨的,儿童所学数学的严谨是“相对”的,小学里常用“不完全归纳”,但教学能够尽可能“完全”还是应该“尽力而为”。长方形的周长:24米长的绳子围长方形土地;不靠墙,长+宽=12两面靠墙:长+宽=24一面靠墙:长+宽×2=24比较距离和面积比较两点之间的距离每个小方格的边长是1厘米。①小甲虫C爬到什么位置时,成了AD的中点?②小甲虫C在哪一段上爬行时,始终有AC>CB?③如果线段AB上有两只小甲虫,它们分别爬到哪里时,与D点的距离相等。④根据小甲虫C的运动情况,请你提出一个数学问题。
比较距离:三角形之间的关系三角形之间的关系先在方格纸上画上一条线段AB。准备画出到直线AB的距离等于2厘米的点。时间只有30秒,先想好,再一起开始。准备好了吗?挑战题。动手画一画,看谁画的点子多。如果到一个点距离等于2厘米的点呢?比较距离。B比较周长。蓝线与红线比,哪条长?蓝红黑虚线为直径比长短3等分直径d=10cm蓝线和红线合起来是多长?比长短d=10cm4等分直径比长短
n等分直径直径为d两个同样的1元硬币,一个硬币A绕着另一个硬币B旋转1圈,硬币A转了几圈?好玩的圆周长图形的面积与周长变化下图中的小方格每边长表示1分米,在图1的基础上,增加了2个小方格(如图2,图3),整个图的面积分别增加了多少?周长增加了多少?图1图2图3
增加一个小正方体,表面积比原来增加还是减少?拿掉一个小立方块,表面积比原来增加还是减少?比较面积和距离:观点与启示
GUANDIANYUQISHI不作具体计算而比较面积的大小和距离的长短,是空间知觉能力的反应。比较大小和长短,不是单凭视觉所做的判断,而是借助具有参照意义的单位来判断,或者找到相互之间的关系来判断。在变化中,寻找变与不变的数量,既是空间知觉的锻炼,也是辩证关系的渗透。在复杂图形中找隐蔽图形您有一双慧眼吗从右图中找到左边这个简单的图形。在复杂图形中找隐蔽图形如:下面这个图形中有多少种图形,每种图形各有多少个?(1982年,张德琇)这个图形中一共有多少个三角形?北京奥运建筑-鸟巢欣赏:建筑中的图形。广州亚运会建筑-小蛮腰案例欣赏:建筑中的图形。2010世博会阳光谷2008奥运会水立方欣赏:建筑中的图形。香港中银大厦广州电视塔法国巴黎卢浮宫玻璃金字塔:600个菱形到底是多少个菱形?德国慕尼黑安联球场:2874个菱形到底多少个菱形?观点与启示
GUANDIANYUQISHI在复杂图形找出相应的图形,既是要感受物体间的位置关系,也需要对组成图形的部分做合适的估计。图形的展开与折叠图形的展开与折叠对折一次对折两次图形的展开与折叠一张正方形的纸要剪下一个最大的圆,怎么操作比较方便?生活中的应用85v58这个号码对称吗图形的展开与折叠观点与启示
GUANDIANYUQISHI对称的除了图还有“数和式”?图形的展开与折叠,有学者的研究是小学生和成人的表现水平差不多,值得思考的是:我们有没有进行过系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电气安全防范》课件
- 《证券基础知识培训》课件
- 单位管理制度合并选集【员工管理】十篇
- 《学业生涯规划》课件
- 《服装供应链》课件
- 单位管理制度范例选集人员管理篇
- 单位管理制度呈现大合集人事管理篇十篇
- 《易制毒管理条例》课件
- 《家庭财产保险案例》课件
- 《设计色彩说》课件
- 上海某C住宅项目成本解析
- 北方民族大学床上用品投标文件
- 安全生产费用归集清单(安措费清单)
- 左传简介完整
- 榕江县锑矿 矿业权出让收益计算书
- 颅脑外科手术环境及手术配合
- 长期异地安置、居住就医备案承诺书【模板】
- 盘查战术教案
- GB/T 2652-2022金属材料焊缝破坏性试验熔化焊接头焊缝金属纵向拉伸试验
- GB/T 1243-1997短节距传动用精密滚子链和链轮
- 打起手鼓唱起歌二声部改编简谱
评论
0/150
提交评论