下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于BP神经网络的国际黄金价格预测模型
[摘要]为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。
[关键词]MATLABBP神经网络预测模型数据归一化
一、引言
自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。
二、影响因素
刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。
三、模型构建
1.模型选择:BP网络具有理论上能逼近任意非线性函数的能力,将输入模式映射到输出模式,只需用已知的模式训练网络,通过学习,网络就有了这种映射能力。2.样本数据归一化:在训练前,对数据进行归一化处理,把输入向量和输出向量的取值范围都归一到[0,1]。
3.BP网络设计:采用单隐层的BP网络进行预测,由于输入样本为5维的输入向量,因此输入层一共有5个神经元,中间层取20个神经元,输出层一个神经元(即黄金价格),网络为5*20*1的结构。中间层的传递函数为S型正切函数,输出层为S型对数函数。5.网络测试:神经元个数为20个时误差最小,此时网络的仿真结果如图3所示,预测精度80%以上,效果满意。四、结论
在对1976年~2006年的影响国际黄金价格的五种因素的数据进行归一化处理后,用MATLAB建立的BP神经网络预测模型进行预测,达到了很好的效果。
国际黄金的长期价格受到许多因素的影响,本文只是对道琼斯工业指数等影响因素诸
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论