




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
作业题(自选5个题目,上交作业时,请按学号次序排好):1、耐火材料的定义,决定耐火材料性质的三个基本因素。2、耐火材料在高温下损毁的原因有哪些?2、耐火材料按化学属性分类时分为哪三类,各包括哪些耐火材料?3、耐火材料的性质主要包括哪些。4、耐火材料矿物组成分类,哪部分先被侵蚀?5、耐火材料骨料和基质有哪两种结合形态,各有何特点?6、什么是气孔率、显气孔率、闭气孔率和吸水率?7、什么是体积密度、真密度和真比重?8、什么是热膨胀,表示方法有哪些,有何实际意义?9、什么是耐火材料的力学性能,包括哪些?10、什么是耐压强度、抗折强度、高温蠕变性能11、什么是耐火度,其与熔点的区别是什么,影响耐火度的主要因素是什么?12、什么是高温荷重软化温度,影响它的因素有哪些,通常所说的荷重软化点指什么?13、什么是高温体积稳定性,重烧线变化?14、一般材料的重烧都是收缩的,为什么在砌筑窑炉等热工设备时还要留膨胀缝?15、什么是热震稳定性,一般认为材料具备什么性能时有较好的热震稳定性?16、什么是抗渣蚀性能,熔渣侵蚀机理有哪几种方式?
耐火材料桑绍柏段红娟武汉科技大学材料与冶金学院耐火材料可用作高温窑炉等热工设备的结构材料以及工业用的高温容器和部件,能承受在其中进行的各种物理化学变化及机械作用;是冶金、玻璃、水泥、陶瓷、机械热加工、石油化工、动力和国防工业等高温工业所必须的重要基础材料。本课程介绍常用耐火材料的基本性能,应用范围以及易懂的生产工艺与原料知识。这门课程是从事耐火材料生产、研究、应用和贸易的人员的必修之课,其重要性不言而喻。绪论一、耐火材料的定义
传统的定义:耐火度不小于1580℃的无机非金属材料;ISO的定义:化学与物理性质允许其在高温环境下使用的非金属(并不排除含有一定比例的金属)材料与产品。二、耐火材料的分类
耐火材料品种繁多、用途各异,有必要对耐火材料进行科学分类,以便于科学研究、合理选用和管理。耐火材料的分类方法很多,其中主要有化学属性分类法、化学矿物组成分类法、生产工艺分类法、材料形态分类法等多种方法。1、按供货形态分类
定型制品:烧成砖、不烧砖;不定形耐火材料(散状料):浇注料、捣打料等。标普型:230mm×113mm×65mm;不多于4个量尺,(尺寸比)Max:Min<4:1;异型:不多于2个凹角,(尺寸比)Max:Min<6:1;或有一个50~70°的锐角;特异型:(尺寸比)Max:Min<8:1;或不多于4个凹角;或有一个30~50°的锐角。
按化学属性分类对于了解耐火材料的化学性质,判断耐火材料在实际使用过程中与接触物之间的化学作用情况具有重要意义。2.按化学性质分类
耐火材料在使用过程中除承受高温作用外,往往伴随着熔渣(液态)及气体等化学侵蚀。为了保证耐火材料在使用中有足够的抵抗侵蚀介质侵蚀能力,选用的耐火材料的化学属性应与侵蚀介质的化学属性相同或接近。耐火材料按化学属性大致可分为酸性耐火材料、中性耐火材料、碱性耐火材料。
(1)酸性耐火材料
通常是指其中含有相当数量二氧化硅的耐火材料。
硅质耐火材料中游离二氧化硅含量很高(大于93%),是酸性最强的耐火材料;
粘土质耐火材料中游离二氧化硅含量较少,是弱酸性的;
半硅质耐火材料居于期间。也有将锆英石质耐火材料归入酸性耐火材料的,因为此类材料中含有较高的SiO2或在高温状态下能形成SiO2。(2)中性耐火材料
中性耐火材料按严格意义讲是指碳质耐火材料。但通常也将以三价氧化物为主体的高铝质、刚玉质、锆刚玉质、铬质耐火材料归入中性耐火材料(两性氧化物如Al2O3、Cr2O3等)。此类耐火材料在高温状况下对酸、碱性介质的化学侵蚀都具有一定的稳定性,尤其对弱酸、弱碱的侵蚀具有较好的抵抗能力。(3)碱性耐火材料
一般是指以MgO、CaO或以MgO·CaO为主要成分的耐火材料(镁质、石灰质、镁铬质、镁硅质、白云石质耐火制品及其不定形材料)。这类耐火材料的耐火度都比较高,对碱性介质的化学侵蚀具有较强的抵抗能力。3.按化学矿物组成分类
此种分类法能够很直接地表征各种耐火材料的基本组成和特性,在生产、使用、科研上是常见的分类法,具有较强的实际应用意义。(1)硅质耐火材料
含SiO2在小于93%但大于85%的材料通常称为硅质耐火材料,主要包括硅砖及熔融石英制品。含SiO2在大于93%的材料成为硅石耐火材料。硅砖以硅石为主要原料生产,其SiO2含量一般不低于93%,主要矿物组成为磷石英和方石英。(2)镁质耐火材料
镁质耐火材料是指以镁砂为主要原料,以方镁石为主晶相,MgO含量大于80%的碱性耐火材料。
镁质制品:MgO含量≥87%,主要矿物为方镁石。
(3)白云石质耐火材料
以天然白云石为主要原料生产的碱性耐火材料称为白云石质耐火材料。主要化学成分为:30-42%的MgO和40-60%的CaO,二者之和一般应大于90%。其主要矿物成分为方镁石和方钙石(氧化钙)。(4)碳复合耐火材料
碳复合耐火材料是指以不同形态的碳素材料与相应的耐火氧化物复合生产的耐火材料。(5)含锆耐火材料含锆耐火材料是指以氧化锆(ZrO2)、锆英石等含锆材料为原料生产的耐火材料。含锆耐火材料制品通常包括锆英石制品、锆莫来石制品、锆刚玉制品等。(6)特种耐火材料
特种耐火材料又可分为如下品种:碳质制品:包括碳砖和石墨制品;纯氧化物制品:包括氧化铝制品、氧化锆制品、氧化钙制品等;非氧化物制品:包括碳化硅、碳化硼、氮化硅、氮化硼、硼化锆、硼化钛、塞伦(Sialon)、阿伦(Alon)制品等。按生产工艺,可分为烧成制品、熔铸制品和不烧制品.
4.其他分类方法5000年前出现了陶器;2000年前有了瓷器;后来,天然的原料开始使用,如硅线石砖;1637年,石墨粘土坩锅投入使用。随着钢铁冶炼技术的发展,耐火材料不断功能化,技术水平不断提升。三、耐火材料的发展历史悠久四.中国耐火材料工业的发展与现状解放前仅有少量的耐火材料工厂,生产能力和产品质量低,严重依赖进口;
计划经济时代-中国耐火材料由33家重点企业生产,实现部分自给;
改革开放以后,随着钢铁工业的迅速发展,耐火材料行业快速发展起来;2006年统计,全国有1505家耐火材料生产企业;耐火材料生产品种齐全,产量世界第一,部分产品出口。钢铁工业的竞争日趋激烈,耐火材料生产厂家面临更大的成本压力;洁净钢的生产对耐火材料提出了更高的要求,除了要求长寿以外,还要求对钢水无污染;中国耐火材料企业的研发力量有待加强。不能仅仅作为一个加工基地;应注意可持续发展战略。如:矿山的管理、耐火材料的回收利用、环境友好耐火材料的使用。存在的问题和今后的发展方向定义和概念;不同耐火材料制品的组成、性能和相关检测方法;不同品种的耐火材料生产的工艺要点和流程;相关的物理化学原理;耐火材料损毁机理及提高耐火材料质量的途径。学习这门课程要了解和掌握的主要内容:
这门课程要求严格哟!平时成绩30%出勤、作业、测试期末考试成绩70%
第一章耐火材料的组成与性质1.1前言
耐火材料是构筑热工设备的高温结构材料,面临:
承受高温作用;机械应力;热应力;高温气体、熔体以及固体介质的侵蚀、冲刷、磨损。耐火材料的质量取决于其性质,为了保证热工设备的正常运行,所选用的耐火材料必须具备能够满足和适应各种使用环境和操作条件。
耐火材料的性质
耐火材料的性质主要包括化学-矿物组成、组织结构、力学性质、热学性质及高温使用性质等。根据这些性质可以预测耐火材料在高温环境下的使用情况。耐火材料所具有的各种性质是热工设备选择结构材料的重要依据。
耐火材料的化学成分、矿物组成及微观结构决定了耐火材料的性质。1.2耐火材料的化学-矿物组成(1)化学组成
化学组成是耐火材料最基本的特性,是决定耐火材料的物相组成以及很多重要性质如抗渣侵蚀性能、耐高温性能、力学性能等的重要基础。通常将耐火材料的化学组成按各个成分含量的多少及作用分为以下几类:
主成分
是指在耐火材料中对材料的性质起决定作用并构成耐火基体的成分。
耐火材料按其主成分的化学性质可分为酸性耐火材料、中性耐火材料和碱性耐火材料。杂质成分
耐火材料中由原料及加工过程中带入的非主要成分的化学物质(氧化物、化合物等)称为杂质。
杂质的存在往往能与主要成分在高温下发生反应,生成低熔性物质或形成大量的液相,从而降低耐火材料基体的耐火性能。添加成分
耐火材料的化学组成中除主要成分和杂质成分外有时为了制作工艺的需要或改善某些性能往往人为地加入少量的添加成分,引入添加成分的物质称为添加剂。按照添加剂的目的和作用不同可分为矿化剂、稳定剂、促烧剂等。(2)矿物组成耐火材料一般说来是一个多相组成体,其矿物组成取决于耐火材料的化学组成和生产工艺条件。矿物组成可分为两大类:结晶相与玻璃相,其中结晶相又分为主晶相和次晶相。
主晶相是指构成耐火制品结构的主体而且熔点较高的结晶相。主晶相的性质、数量、结合状态直接决定着耐火制品的性质。
次晶相又称第二固相,是在高温下与主晶相共存的第二晶相。如镁铬砖中与方镁石并存的铬尖晶石,镁铝砖中的镁铝尖晶石,镁钙砖中的硅酸二钙,镁硅砖中的镁橄榄石等。次晶相也是熔点较高的晶体,它的存在可以提高耐火制品中固相间的直接结合,同时可以改善制品的某些特定的性能。如:高温结构强度以及抗熔渣渗透、侵蚀的能力。1.3耐火材料的组织结构①耐火材料是由固相(包括结晶相与玻璃相)和气孔两部分构成的非均质体。
②耐火材料是由颗粒(也称“骨料”)和基质组成的非均质体。它们之间的相对数量及其分布和结合形态构成了耐火材料的显微结构。耐火材料的显微结构1—颗粒(骨料),2—基质,3—气孔4—晶粒,5—晶界,6—裂纹
基质,是存在于颗粒之间的各物相之总称,也称为结合相。基质的组成和形态对耐火制品的高温性质和抗侵蚀性能起着决定性的影响。
基质对于主晶相而言是制品的相对薄弱之处。
为了提高耐火制品的使用寿命,在生产实践中,往往采取调整和改变制品的基质组成的工艺措施,来改善和提高耐火制品的性质。图1-1硅酸盐结合与直接结合显微结构示意图
耐火材料骨料与基质的结合形态有两种:即陶瓷结合与直接结合。
陶瓷结合又称为硅酸盐结合,其结构特征是耐火制品主晶相(骨料)之间由低熔点的硅酸盐非晶质和晶质联结在一起而形成结合,如普通镁砖中硅酸盐基质与方镁石之间的结合。此类耐火制品在高温使用时,低熔点的硅酸盐首先在较低的温度下成为液相(或玻璃相软化),大大降低了耐火制品的高温性能。MgOABC
MgOSiO2CaO(wt%)A24.8339.0936.08B11.7037.0051.30C11.5436.2952.17耐火材料中陶瓷结合示意图
直接结合是指耐火制品中,高熔点的主晶相之间或主晶相与次晶相间直接接触形成结晶网络的一种结合。直接结合耐火制品一般具有较高的高温力学性能,与材质相近的硅酸盐结合的耐火制品相比高温强度可成倍提高,其抗渣蚀性能和体积稳定性也较高。一种致密氧化铝材料
耐火材料中气孔体积与总体积之比称为气孔率。耐火材料中的气孔可分为三类:开口气孔(显气孔)、贯通气孔、封闭气孔。若把开口气孔与贯通气孔合并为一类,则耐火材料的气孔可分为开口气孔和封闭气孔两类。
1.4耐火材料的常温物理性质(1)气孔率耐火材料中气孔的类型耐火材料中存在的气孔材料中气孔产生的原因?1)原料中的气孔(原料没有烧好)2)制品成型时,颗粒间的气孔
由于显气孔率的测定较为容易,所以耐火材料气孔率的指标常以显气孔率来表示:式中:Pa为显气孔率
V1为制品中开口气孔的体积
V0为制品的总体积,即试样外表面围成的体积,亦称表观体积。(2)体积密度
耐火制品单位表观体积的质量称为体积密度,通常用kg/m3或g/cm3表示。对于同一种耐火制品而言,其体积密度与显气孔率呈负相关关系,即制品的体积密度大则显气孔率就低。式中:Db为体积密度(g/cm3)
G为试样质量g
Vb为试样表观体积cm31.5耐火材料的热学性质和导电性质(1)热膨胀
耐火材料的体积或长度随着温度的升高而增大的物理性质称为热膨胀。耐火材料的热膨胀可以用线膨胀系数或体膨胀系数表示,也可以用线膨胀百分率或体积膨胀百分率表示。
体积膨胀系数:℃-1
线膨胀系数:℃-1
膨胀系数是指耐火材料由室温加热至试验温度的区间内,温度每升高1℃,试样体积或长度的相对变化率。意义:窑炉结构设计的重要参数、预留膨胀缝的依据,可间接判断耐材热震稳定性能。(2)热导率
耐火材料的热导率是指单位温度梯度下,单位时间内通过单位垂直面积的热量,用λ表示:其中:λ—导热率(W/m·K);
ΔQ—Δt时间沿x轴方向穿过ΔF截面上的热量(W/m2);
—沿x轴方向的温度梯度(K/m)。
耐火材料中所含的气孔对其热导率的影响最大。一般说来,在一定的温度范围内,气孔率越大,热导率越低。耐火材料的化学矿物组成也对材料的导热率也有明显影响。晶体中的各种缺陷、杂质以及晶粒界面都会引起格波的散射,也等效于声子平均自由程的减小,从而降低热导率。(3)热容
热容是耐火材料的另一重要的热学性质,它是表征材料受热后温度升高情况的参数。任何物质受热后温度都要升高,但不同的物质温度升高1℃所需要的热量不同,工程上用在常压下加热1公斤物质升高1℃所需要的热量(以KJ计)来表示和衡量这一性质,称为热容。
工程上所用的平均热容是指从温度T1到T2所吸收的热量的平均值。平均热容是比较粗略的,温度范围越大,精度越差,应用时要特别注意使用的温度范围。(4)导电性耐火材料通常在室温下是电的不良导体,随温度升高,电阻减小,导电性增强。若将材料加热至熔融状态,则会呈现较强的导电能力。某些耐火材料具有导电性,如含碳耐火制品具有导电性,而二氧化锆制品在高温下也具有较好的导电性,可以作为高温下的发热体。1.6耐火材料的力学性质耐火材料的力学性质是指制品在不同条件下的强度等物理指标,是表征耐火材料抵抗不同温度下外力造成的形变和应力而不破坏的能力。耐火材料的力学性质通常包括耐压强度、抗折强度、扭转强度、耐磨性、弹性模量及高温蠕变等。(1)耐压强度
耐火材料的耐压强度包括常温耐压强度和高温耐压强度,分别是指常温和高温条件下,耐火材料单位面积上所能承受的最大压力,以牛顿/毫米2(或MPa)表示。可按下式计算:式中Cs—耐火制品的耐压强度,单位:MPa;
P—试样破坏时所承受的极限压力,牛顿;
A—试样承受载荷的面积,平方毫米。(2)抗折强度
耐火材料的抗折强度包括常温抗折强度和高温抗折强度,分别是指常温和高温条件下,耐火材料单位截面积上所能承受的极限弯曲应力,以牛顿/毫米2(或MPa)表示。它表征的是材料在常温或高温条件下抵抗弯矩的能力,采用三点弯曲法测量。式中:R—抗折强度,N/mm2(MPa);
F—试样断裂时所施加的最大载荷,N;
l—试样底面两支撑点之间的距离,mm;
b—上刀口部位试样的宽度,mm;
d—上刀口部位试样的厚度(高度)mm。(3)高温蠕变性能耐火材料的高温蠕变性能是指在某一恒定的温度以及固定载荷下,材料的形变与时间的关系。根据施加荷重形式的不同可分为高温压缩蠕变、高温拉伸蠕变、高温抗折蠕变等。由于高温压缩与高温抗折蠕变较易测定,故应用较多。我国通常采用压缩蠕变。
高温压缩蠕变的表示方法一般以某一恒定温度(℃)和荷重(MPa)条件下,制品的变形量(%)与时间(h)的关系曲线即蠕变曲线来表示,也可用某一时段内(如25-50小时)制品的变形量(%)来表示。下图给出了耐火材料典型的高温蠕变曲线。1.7耐火材料的高温使用性质
耐火制品在各种不同的窑炉中使用时,长期处于高温状态下,耐火材料耐高温的性质能否满足各类窑炉工作条件的要求,是材料选用的主要依据,因此耐火制品的高温性质也是最重要的基本性质。(1)耐火度
耐火材料在无荷重条件下,抵抗高温作用而不熔化的性质称为耐火度。与有固定熔点的结晶态物质不同,耐火材料一般是由多种矿物组成的多相固体混合物,没有固定的熔点。其熔融是在一定温度范围内进行的,当对其加热升温至某一温度时开始出现液相(即固定的开始熔融温度),继续加热温度仍然继续升高、液相量也随之增多,直至升至某一温度全部变为液相,在这个温度范围内,液相与固相同时存在。耐火度是一个技术指标,将被测制品按一定方法制成截头三角锥。试锥以一定升温速度加热,达到某一温度开始出现液相,温度继续升高液相量逐渐增加,粘度减小,试锥在重力作用逐渐软化弯倒,当其弯倒至顶点与底接触的温度,即为试样的耐火度。耐火度与熔点的区别:1、熔点指纯物质的结晶相与液湘处于平衡时的温度;2、熔点是一个物理常数;3、耐火材料为多相混合体,其熔融是在一定的温度范围内进行的,是一个工艺指标。耐火度的意义:评价原料纯度和难熔程度。(2)高温荷重软化温度
耐火材料的高温荷重软化温度也称为高温荷重变形温度,表示材料在温度与荷重双重作用下抵抗变形的能力。高温荷重软化温度在一定程度上能表明耐火制品在与其使用情况相近的条件下的结构强度与变形情况,因而是耐火制品的重要性能指标。耐火制品的荷重软化温度取决于制品的化学-矿物组成、组织结构、显微结构、液相的性质、结晶相与液相的比例及相互作用等。耐火制品荷重软化温度的测定一般是在0.2MPa的固定载荷下,以一定的升温速度均匀加热,测定试样压缩0.6%、4%、40%时的温度。试样压缩0.6%时的变形温度即为试样的荷重软化开始温度,即通常所说的荷重软化点。试样压缩4%(2mm)-变形温度;试样压缩40%(20mm)-溃裂点。各种耐火材料的荷重变形曲线1-高铝砖(Al2O370%);2-硅砖;3-镁砖;4-粘土砖Ⅰ;5-半硅砖;6-粘土砖
Ⅱ(3)高温体积稳定性
高温体积稳定性是评价耐火材料质量的一项重要物理指标,表示耐火材料在高温下长期使用时,其外形及体积保持稳定而不发生变化的性能。
一般而言,烧成耐火制品在高温煅烧过程中,由于各种原因制品在烧成结束时,其物理化学反应往往未达到平衡状态;另一方面,制品在烧成过程中由于窑炉温度分布不均等原因,不可避免地存在欠烧现象,这些烧结不充分的欠烧制品中,其间的物理化学反应进行得也不充分。因此制品在使用过程中受到高温长期作用时,一些物理化学变化会继续进行并伴随有不可逆的体积变化。
这些不可逆的体积变化称为残余膨胀或残余收缩,也称重烧膨胀或收缩。
重烧体积变化的大小表征了耐火制品的高温体积稳定性,对高温窑炉等热工设备的结构及工况的稳定性具有十分重要的意义。测定意义:衡量材料烧结性能的好坏。
一般材料的重烧都是收缩的,为什么在砌筑窑炉等热工设备时还要留膨胀缝?
(4)热震稳定性
耐火材料抵抗温度急剧变化而不被破坏的性能称为热震稳定性或抗热冲击性能。高温窑炉等热工设备在运行过程中,其运行温度常常发生变化甚至剧烈的波动.这种温度的急剧变化常常会导致耐火材料产生裂纹、剥落、崩裂等结构性的破坏,而影响热工设备操作的稳定性、安全性和生产的连续性。产生热应力的因素:材料的热膨胀系数、材料的导热系数、缓冲热应力的因素(弹性模量的大小)。耐火材料的热震稳定性与其热膨胀率(小)、导热率(大)以及弹性模量(小)密切相关,也与制品的宏观、微观组织结构,外形结构及尺寸有关。耐火材料热震稳定性试验后的电镜图片
由于抗热震稳定性问题的复杂性(除了弹性模量因素影响以外还有材料的强度、膨胀系数、热导率、形状和尺寸等),至今还未能建立一个十分完善的理论,因此任何试图改进材料抗热震性能的措施,都必须结合具体的使用条件和要求,综合各种因素的影响,同时必须和实际经验相结合。目前人们所认可的是:材料的膨胀系数越小,热导率越大,其抗热震稳定性能越好。热震稳定性的试验方法:
风冷(1000℃,30分钟,风冷,重复)水冷(1100℃,20分钟,水冷,自然干燥,重复)评价:
试样被破坏的程度试样强度的保持率(5)含碳耐火材料的抗氧化性含碳耐火材料在氧化性气氛中,其中的碳素材料会同空气中的氧气发生发应。试样:50±2mm的立方体或直径与高为50±2mm的圆柱体;温度:1400℃,保温3小时,固定流量向炉内通空气;评价:切开试样,测量脱碳层厚度。也可由双方协商测量方法。抗氧化性试验后,试样截面图
耐火材料在高温下抵抗熔渣侵蚀的性能称为抗渣蚀性能。腐蚀性介质通常称之为“熔渣”。所谓“熔渣”,包括高温下与耐火材料接触的各种固态、液态物料(如水泥熟料、石灰、熔融金属、玻璃液等)、冶金炉渣、燃料灰分、飞灰以及各种气态物质等。高温环境下,熔渣物质与耐火材料相接触,并与之发生复杂的物理化学反应,导致耐火材料的侵蚀损毁。占材料被损坏原因的50%以上。(6)抗渣蚀性能
熔渣侵蚀是耐火材料使用过程中最主要的一种损毁形式,耐火材料在熔渣中的溶蚀损毁一般可分为以下几种情况:
单纯溶蚀:耐火材料与熔渣不发生化学反应的物理溶解作用所造成的耐火材料的损毁。如碳素材料向钢铁溶液中的溶解即属于单纯溶蚀作用。
反应溶蚀:耐火材料与熔渣物质在其接触界面处发生化学反应,生成低熔点的化合物,导致耐火材料工
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保健医培训管理制度
- 售商业企业管理制度
- 街道科普工作管理制度
- 轧钢公司员工管理制度
- 通宵加班调休管理制度
- 锅炉安装施工管理制度
- 证照管理印章管理制度
- 提升行政管理人才培养质量的创新路径与实践策略
- 人力资源管理行业的未来挑战与发展机遇
- 废弃煤矿地下水污染防治与生态修复综合治理方案
- 统编版(2024)七年级下册语文第三单元教案
- (一模)石家庄市2025年高三年级教学质量检测(一)地理试卷(含答案)
- 数学-湖南省长郡二十校联盟2025届新高考教学教研联盟高三第一次联考(长郡二十校一联)试题和答案
- 2025届陕西省安康市高三下学期二模历史考试
- 初中地理中考备考-大题答题模板(九个板块)
- 玄武岩矿行业市场发展及发展趋势与投资战略研究报告
- 土木工程论文范文
- 甲流及其检测方法检验科
- GB/T 45159.3-2024机械振动与冲击黏弹性材料动态力学性能的表征第3部分:悬臂剪切梁法
- DB35-T 2208-2024 面向视频图像识别的AI边缘计算系统应用技术要求
- bilibili十五大特色人群白皮书
评论
0/150
提交评论