版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个2.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)3.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(
)A.5 B.7 C.9 D.114.关于的方程有实数根,则满足()A. B.且 C.且 D.5.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°6.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差7.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的D.据此估计全校1000名八年级同学,选择科目B的有140人8.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A. B. C. D.9.方程x(x-2)+x-2=0的两个根为()A., B.,C., D.,10.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为()A.8cm B.4cm C.4cm D.5cm二、填空题(本大题共6个小题,每小题3分,共18分)11.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.12.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.13.的算术平方根是_______.14.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.15.如图,四边形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.则=16.如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.三、解答题(共8题,共72分)17.(8分)﹣(﹣1)2018+﹣()﹣118.(8分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).19.(8分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.20.(8分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)21.(8分)计算:2-1+20160-3tan30°+|-|22.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.23.(12分)计算:2tan45°-(-)º-24.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF;当四边形ACDE为菱形时,求BD的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.2、D【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).3、B【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.4、A【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.5、D【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6、D【解析】
根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、B【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;故选B.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.8、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.9、C【解析】
根据因式分解法,可得答案.【详解】解:因式分解,得(x-2)(x+1)=0,
于是,得x-2=0或x+1=0,
解得x1=-1,x2=2,
故选:C.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.10、C【解析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴故选:C.【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.12、(2,2)【解析】分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是则在中,它的对应点的坐标是或,进而求出即可.详解:与是以点为位似中心的位似图形,,,若点的坐标是,过点作交于点E.点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.13、3【解析】
根据算术平方根定义,先化简,再求的算术平方根.【详解】因为=9所以的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.14、【解析】
解:设E(x,x),∴B(2,x+2),∵反比例函数(k≠0,x>0)的图象过点B.E.∴x2=2(x+2),,(舍去),,故答案为15、【解析】
连接AC,过点C作CE⊥AB的延长线于点E,,如图,先在Rt△BEC中根据含30度的直角三角形三边的关系计算出BC、CE,判断△AEC为等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【详解】连接AC,过点C作CE⊥AB的延长线于点E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等边三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,设BE=x,则BC=2x,CE=,在RT△AEC中,AC=,∴,故答案为.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.合理作辅助线是解题的关键.16、(,)【解析】
连接AC,根据题意易证△AOC∽△COB,则,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.【详解】解:连接AC,∵A、B两点的横坐标分别为﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴点C的坐标为(0,2),∵A、B两点的横坐标分别为﹣1,4,∴设抛物线解析式为y=a(x+1)(x﹣4),把点C的坐标代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此抛物线顶点的坐标为(,).故答案为:(,).【点睛】本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.三、解答题(共8题,共72分)17、-1.【解析】
直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.18、(Ⅰ)(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【解析】
(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.19、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解析】
(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.【详解】解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)结论ADBC=APBP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值为2秒或2秒.【点睛】本题考查圆的综合题.20、(1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.【解析】试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG的两邻边相等,从而得到平行四边形AHBG是菱形.试题解析:(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四边形AHBG是菱形.(3)需要添加的条件是AB=BC.点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.21、【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;【详解】原式===.【点睛】此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.22、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌风格与消费者心理计划
- 西昌学院《平面广告设计与制作》2022-2023学年第一学期期末试卷
- 西北大学《数字图像处理实验》2023-2024学年第一学期期末试卷
- 西安邮电大学《现代邮政管理》2021-2022学年第一学期期末试卷
- 《时序逻辑电路小结》课件
- 项目7 7.1 主要农业气象灾害及防御(2)(课件)-《植物生产与环境》(高教版第4版)
- 视听语言(全彩微课版)课程思政案例库
- 《全新绿色商务罗盘》课件
- 贵州省贵阳市观山湖区2023-2024学年三年级上学期语文期末试卷
- 购买第三方服务的合同
- 2024年山东济南地铁校园招聘笔试参考题库含答案解析
- 脑梗死文献综述
- 城市交通与交通拥堵解决方案
- 标准菌株管理规范
- 2023年工装夹具设计工程师年终总结及下一年计划
- 流行病学厦门大学中国大学mooc课后章节答案期末考试题库2023年
- 信息安全专业大学生职业生涯规划书
- 国开2023秋《幼儿园教育质量评价》形考任务123 大作业参考答案
- 酒类文化传承与品牌建设策略研究
- 烧烤行业面临的机遇与挑战
- 课本剧西门豹治邺剧本
评论
0/150
提交评论