![人教版八年级数学上册轴对称教案_第1页](http://file4.renrendoc.com/view/214eec0d7244e69f27613e370d536248/214eec0d7244e69f27613e370d5362481.gif)
![人教版八年级数学上册轴对称教案_第2页](http://file4.renrendoc.com/view/214eec0d7244e69f27613e370d536248/214eec0d7244e69f27613e370d5362482.gif)
![人教版八年级数学上册轴对称教案_第3页](http://file4.renrendoc.com/view/214eec0d7244e69f27613e370d536248/214eec0d7244e69f27613e370d5362483.gif)
![人教版八年级数学上册轴对称教案_第4页](http://file4.renrendoc.com/view/214eec0d7244e69f27613e370d536248/214eec0d7244e69f27613e370d5362484.gif)
![人教版八年级数学上册轴对称教案_第5页](http://file4.renrendoc.com/view/214eec0d7244e69f27613e370d536248/214eec0d7244e69f27613e370d5362485.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.1
轴对称第1时
轴对称教学目标.理解轴对称图形轴对称及线段垂直平分线的概念,并能作出它们的对称轴..了解轴对称图形和轴对称的区别和联系..掌握轴对称的性质.教学重点轴对称图形和轴对称的概念及轴对称的性质.教学难点轴对称图形和轴对称的区别和联系.教学设计一师一优课一一名师(设计者:)教学过程设计一、创设情景,明确目标我们生活在丰富多彩的图形世界里美的事物往往与图形的对称联系在一起中外各种风格的著名建筑、动植物、艺术作品、图标、日常生活用品等等,都和对称密不可分我可以根据自己的设想创造出对称的作品点和美化生活就我们一起走进轴对称的世界去感受它的奇妙和美丽吧!观察上图和教科书中的图片,你有什么感受?二、自主学习,指向目标.自学教材第58至60页.请完成“《学生用书》”相应部分.三、合作探究,达成目标探究点一轴对称图形和轴对称概念活动一:读教材P
展示点评1.图13.1-1,什共同特点?什么叫轴对称图形?对称轴是什么?请举出轴对称图形的实例.2.图13.1-3有么共同特点什么叫两个图形关于一条直线对称?请举出成轴对称图形的实例.小组讨论:轴对称图形与两个图成轴对称有什么区别和联系?反思小结1.判断一个图形是不是轴对称图形键是抓住轴对称的本质即形是否有“存在直线——将其折叠——互相重合”的图形特征.2两图形是否成轴对称是是否有“存在直线——将其折叠——互重合”的图形特征.跟踪训练:见《学生用书》相应分探究点二轴对称的性质活动二:察教材图13.3-展示点评:1.完成“思考”中的题;.一对对称点所连线段与对称轴在位置上有什么关系?.什么叫线段的垂直平分线?请用符号语言表示.小组讨论:图形轴对称有什么性?它有什么作用?反思小结如果两个图形关于某线对称么对称轴是任何一对对应点所连线段的垂直平分线轴对称图形的对称轴任何一对对应点所连线段的垂直平分线可以用来证明线段相等.跟踪训练:见《学生用书》相应分四、总结梳理,内化目标.本节课学习了哪些主要内容?.轴对称图形和轴对称的区别与联系是什么?.成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?轴对称图形的性实际问题轴对称的性质五、达标检测,反思目标1.下列图形中是常见的安全标,其中是轴对称图形的()2.下列说法错误的是(D).关于某直线对称的两个三角形一定全等.轴对称图形至少有一条对称轴.正方形的一条对角线把它所分成的两个三角形成轴对称.角的对称轴是角的平分线3如图eq\o\ac(△,,)ABC与DEF关于直对称若AB2cm∠=55°则DE=,∠=°__.4.判断下列各种图形是不是轴称图形?若是,画出它的对称轴.()()()()5.图中任意一个正方形与哪些方形成轴对称?整个图形是轴对称图形吗?它有几条对称轴?4●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第1、题.2.课后作业见《学生用书第2时
线段的垂平分线的性(一教学目标.掌握线段垂直平分线的性质和判定..能运用线段垂直平分线的性质和判定解决实际问题.教学重点线段垂直平分线的性质.教学难点线段垂直平分的性质的运用.教学设计一师一优课一一名师(设计者:教学过程设计一、创设情景,明确目标
)如图,直线l垂平分线段ABPPP…是直线l上点,请猜想并验证点P,,P…到与点B的离之间的数量关系?二、自主学习,指向目标.自学教材第61页62页.请完成“《学生用书》”相应部分.三、合作探究,达成目标探究点一线段垂直平分线的性活动一:1.完成教材P探栏中的问题.2.线段垂直平分线的性质是什?展示点评:用推理的方法证明线段垂直平分的性质(根据右图,写出已知,求证和证明)小组讨论:线段垂直平分线的性在解题中有哪些应用?反思小结线段垂直平分线的性是证明线段相等的简捷的方法用解题能省时省力.探究点二线段垂直平分线的判活动二:1.反过来,如果PA=PB那么是否线段AB的直平分线上?.由此,我们可以得到什么结论?.请写出以上结论的证明过程.展示点评再找一些到线段端的距离相等的点吗?能找多少个这样的点?这些点能组成什么几何图形?由此我们可以得以什么结论.小组讨论:线段垂直平分线的性与判定之间有何联系与区别?反思小结:线段垂直平分线的性与判定之间题设和结论正好相反,是互逆定理.跟踪训练:见《学生用书》相应分四、总结梳理,内化目标.本节课学习了哪些内容?.线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?.如何判断一条直线是否是线段的垂直平分线?实际线性质→问题线判定
实际应用五、达标检测,反思目标1.如图CD垂直平分AB,若AC=cmBDcm,则四边形ACBD的周长为.,第1题),第2题)A.cmB.7.8cmC3.2cmD.cm2.如图,有A、、三个居民区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建C.A.在边AC、BC两高的交点处B.在边ACBC两条线的交点处C.在边ACBC两条直平分线的交点处D∠ABC∠ACB两角平分线的交点处3.如图,OP平分∠AOB,⊥OA,,足分别为CD,下列结论不一定成立的是),第3题)第4题),第5题)A.PC=B.平∠CPDC.OC=D.垂平分OP4.如图,eq\o\ac(△,在)中边BC的直平分线交AB于,eq\o\ac(△,若)ABC的长为10cm,=cm,eq\o\ac(△,求)ACE的长.6cm.5.如图AB=ACDB=E是AD延线上的一点BE是与CE相等试说明理由.BEDBDC.ADE是CE.●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第69题.2.课后作业见《学生用书第3时
线段的垂平分线的性(二教学目标1.能用尺规过直线外一点作已直线的垂线和线段的垂直平分线.2.了解作图的一般步骤和作图言,理解作图的依据.3.运用尺规作图的方法解决简的作图问题.教学重点用尺规作过直线外一点作已知直线的垂线和作线段的垂直平分线.教学难点理解作图的依据和用数学语言描述作图过程.教学设计一师一优课一一名师(设计者:)教学过程设计一、创设情景,明确目标教师用多媒体显示几幅轴对称的图形.问题轴称的性质是什么?追问:一说线段垂直平分线的性质,如何判断一条直线是否是线段的垂直平分线?有时我们感觉两个平面图形是轴对称的何证呢?不折叠图形能确地作出轴对称图形的对称轴吗?二、自主学习,指向目标.自学教材第62至63页.请完成“《学生用书》”相应部分.●合作探究达成目标探究点一尺规作图:经过直线一点作已知直线的垂线活动一:知:直线和直线外一求作:的垂,使它经过点C.展示点评:作法:62应用62应用小组讨论:为什么直线CF就是所求作的直线.变式:尺规作图,已知:直线AB和AB上点,求作AB的垂线,使它经过点C.反思小结知直线外一点作知直线的垂线的依据是线段垂直平分线的性质的逆定理.跟踪训练:见《学生用书》相应分探究点二作线段的垂直平分线活动二:1.思考教材P页思”栏目中的问题.例2如,点A和点B关于条直线成轴对称,你能作出这条直线吗?展示点评:求作的这条直线与线AB之有什么关系?变式练习:作出五角星的一条对称轴,和同学比较一下,所作出的对称轴一样吗?小组讨论:用尺规作图的方法怎作出线段的中点?这种作法的依据什么?反思小结规作线段垂直平线的依据是线段垂直平分线的性质和两点确定一条直线,用尺规作图的方法作线段的垂直平分线,它与线段的交点就是线段的中点.五角星有5条称轴作对称图形的对称轴的方法是到任意一组对应点作出对应点所连线段的垂直平分线,就得到此图形的对称轴.跟踪训练:见《学生用书》相应分四、总结梳理,内化目标.本节课学习了哪些内容?.作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?.如何用尺规作轴对称图形的对称轴?过直线外一点作已知直线的垂线作段的垂直平分线轴对称图形的对称轴五、达标检测,反思目标1.如图,在△ABC中分别以点A点为圆心,大于AB的长为半径画弧,两弧相交于点M,,作直线,BC于,连接AD.若△的周长为10AB=7,eq\o\ac(△,则)的长为(C)A.7B..17.202.为了推进农
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 对中学历史课堂管理的认识和实践
- 武装押运申请书
- 土地并申请书
- 房地产申请书
- 工程仲裁申请书
- 大学生创业项目计划书爱心
- 大学生创业课旅游项目有哪些
- 天车工过关测验训练题大全附答案
- 因数中间或末尾有零的乘法水平监控模拟题大全附答案
- 小学四年级数学几百几十数乘以一位数能力测试习题
- 2025年浙江省温州乐清市融媒体中心招聘4人历年高频重点提升(共500题)附带答案详解
- 2025年煤矿探放水证考试题库
- C语言程序设计 教案
- 农业机械设备运输及调试方案
- 2025新译林版英语七年级下单词表
- 海洋工程设备保温保冷方案
- 口腔颌面部发育(口腔组织病理学课件)
- 机房设备搬迁及系统割接施工方案
- 新疆2024年中考数学试卷(含答案)
- 医疗安全(不良)事件报告制度培训课件
- 主干光缆、支线光缆线路中断应急预案
评论
0/150
提交评论