误差原理第一章 基本概念课件_第1页
误差原理第一章 基本概念课件_第2页
误差原理第一章 基本概念课件_第3页
误差原理第一章 基本概念课件_第4页
误差原理第一章 基本概念课件_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人类为了认识自然与改造自然,需要不断地对自然界的各种现象进行测量和研究,由于实验方法和实验设备的不完善、周围环境的影响,以及受人们认识能力所限等,测量和实验所得数据与被测量的真值之间,不可避免地存在着差异,这在数值上表现为误差。随着科学技术的日益发展和人们认识水平的不断提高,虽可将误差控制得越来起小,但终究不能完全消除它。误差存在的必然性和普遍性.已为大量实践所证明,为了充分认识并进而减小或消除误差,必须对测量过程和科学实验中始终存在着的误差进行研究。第一章基本概念一、意义研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据。(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济的条件下,得到理想的结果。二、基本概念测量是研究误差的前提,研究误差的目的就是设法评价测量结果的可信程度。测量的定义测量就是人们借助专门设备,通过实验的方法,对客观事物取得测量结果的认识过程。三种形式:带有单位的数值;在固定坐标系中给出的曲线;按一定比例给出的图形。根据实际需要,测量结果不外乎下面三种形式:(1)带有单位的数值;(2)在固定的坐标系中给出曲线;(3)按一定的比例给出的图形.以上任一形式的测量结果都可以用下式表示:测量结果=数值(被测量与标准的比值)×单位(量纲)测量直接测量间接测量数值单位二.测量方法的分类1.按对测量结果精确度要求的不同,可把测量分为:(1)工程测量工程测量是一般工作中所进行的测量,对测量结果只要求取得测量值就能满足对测量的要求,不需要考虑测量误差的大小或估计测量值的可信程度.(2)精密测量凡是经过测量取得测量结果后,还要求估计出测量结果的误差确切值,则为精确测量。2.根据取得测量结果的方法不同,可把测量分为:(1)直接测量把被测量与作为测量标准的量直接进行比较,或用预先按标准校对好的测量仪器对被测量进行测量,通过测量能直接得到被测量数量大小的测量结果,称此为直接测量.例如:用米尺测量桌子的长度.(2)间接测量被测量不能直接用测量的方法得到,而必须通过一个或多个直接测量值,利用一定的函数关系运算才能得到,此种测量称为间接测量.例如:测物体的运动速率;牛顿测风速

精密测量得到的测量结果精度较高,但它所用的测量设备精度也高,测量设备对其工作环境的要求也比较严格,因此所付出的代价也大。工程测量得到的测量结果精度较低,所用的测量设备简单,价格便宜,操作也比较简便,故所付出的代价也比较小。间接测量可以用下面的一般公式来表示,即(3)组合测量被测量不能通过直接测量或者间接测量得到,而必须通过直接测量的测量值或者间接测量的测量值建立联立方程组,才能得到最后的测量结果.这样的测量称为组合测量.3.根据测量条件不同,把测量分为:(1)等精度测量对某一固定被测量进行重复测量,所取得的测量数据可以认为是在相同的测量精度条件下得到的,这种测量称为等精度测量.(2)不等精度测量对一被测量进行测量得到的数据,其精度可以判定是不等的,这种测量称为不等精度测量.1.3误差(error)的基本概念一.误差的定义及表示方法

所谓误差就是测量值与被测量的真值之间的的差,可表示为误差=测量值-真值1.绝对误差误差定义为该量的给出值与其客观真值之差.真值在某一时刻或某一位置状态下,某量本身体现出的客观值或实际值.

误差=给出值-真值

由于误差与给出值有相同的量纲,故该误差又称为绝对误差.实际值满足规定准确度的用来代替真值使用的量值.2.相对误差相对误差=误差/真值3.引用误差仪器示值的绝对误差与测量范围上限值或者量程之比值,以百分数表示.真值在某一时刻和某一位置或状态下,某量本身体现出的客观值或实际值。一般说来,真值是未知的,因此误差也就未知,但绝不意味真值一定不知道,有些情况下真值是可以知道的,又有些情况下从相对的意义上来说也是知道的。真值可知的情况有如下几种:理论真值例如,平面三角形三内角之和恒为180°,同一量值自身之差为零,而自身之比为1;理想电容和电感上,其电压与电流的相位差为90°;此外,还有理论设计值和理论公式表达式等等。计量学约定真值国际计量大会决议,例如:(A)长度单位——米是光在真空中,在1/299792458s的时间间隔内行程的长度。(B)质量单位——保存在法国巴黎国际计量局的铂—铱合金圆柱体的质量是1kg。(c)时间单位——铯—133原子处于特定的状态(原子基态的两个超精细能级之间的跃迁)时,辐射出9192631770个周期的电磁波。它所持续的时间为1s。满足以上条件复现出的量值都是真值。2、误差的特点普遍性---所有的测量数据都存在误差---不可避免的最高基准的测量传递手段(测量仪器/测量方法)---不绝对准确①

“米制”建议(18世纪末法国科学院)---

“米”定义(1791年法国国会)---通过巴黎的地球子午线长度的四千分之一---铂杆“档案尺”(1799年)---两端之间的距离---第一个实物基准长度:“档案尺”变形---较大误差---废弃(1872年米制国际会议)②铂铱合金的X形尺---米原器(1889年第一次国际计量大会)---中性面上两端的二条刻线在0C时的长度---(1~2)10-7(复现精度)③自然基准(1960年第十一次国际计量大会)---废弃米原器---Kr-86的2p10-5d5能级间跃迁在真空中的辐射波长的1650763.73倍。---(0.5~1)10-8(复现精度)④

“米”新定义(1983年第十七届国际计量大会)---光在真空中1s时间内传播距离的1/299792485---1.310-10(复现精度)①减小误差的影响,提高测量精度测量精度---测量技术水平的主要标志之一精度提高受到限制---测量误差的影响作出评定②对测量结果的可靠性给出评定(精确度的估计)标准器相对真值高一级标准器的误差与低一级标准器或普通计量仪器的误差相比,为其1/5(或1/3—1/20)时,则可以认为前者是后者的相对真值。由此引出一个实际值的概念。实际值满足规定准确度的用来代替真值使用的量值。例1-1测得某平面三角块的三内角之和为180°00′03″,则该内角之和的误差为+3″。例1-2今用一普通压力计测量某压力,得其值为97.968MPa。用更准确的方法测得值为98.168MPa,则普通压力计测得值的误差为—0.20MPa,所以,误差这个量值已成为评定测量过程或汁量仪器的准确度不可缺少的尺度。引进一个新的定义修正值=-误差=真值-结出值真值=给出值+修正值=给出值-误差这说明,含有误差的给出值加上修正值后就可消除误差的影响,而加上修正值的作用如同扣除误差的作用一样,这非常符合人们的逻辑思维过程。相对误差例1-3用尺子测量100m的准确距离,得值101m,则误差为lm。又用钢尺测量准确距离为1000m的长度,得值1001m,则误差亦为1m。从误差的绝对值来说,它们都一样,但是由于所测距离的不同,它们的准确程度是不一样的,前者测量100m差了1m,后者是测量了1000m差了1m。为了描述测量的准确程度而引出相对误差的定义。相对误差=误差/真值当误差较小时,有相对误差=误差/给出值2)相对误差测量的绝对误差与被测量的真值之比绝对误差很小定义:表示:百分数(%)---分子分母量纲相同相对误差=100%绝对误差真值

=100%xx0相对误差=100%绝对误差测得值

=100%xx例:质量G1=50g,误差1=2g;质量G2=2kg,误差2=50g

1=100%=100%=4%1G1G1的相对误差为250

2=100%=100%=2.5%G2G2的相对误差为5020002---G2的测量效果较好确切反映测量效果:被测量的大小不同---允许的测量误差不同被测量的量值小---允许的测量绝对误差也越小相对误差=±(0.0002/0.2175)100=±0.092%相对误差=±(0.0002/2.1750)100%=±0.0092%=±0.092%。由此可知,绝对误差相等,而相对误差可能差异很大,称取的物质量越大,相对误差越小。用相对误差能更好、更确切地反映测定结果的准确度。例.用分析天平称取两物体的重量各为2.1750g和0.2175g,分析天平的误差为±0.1mg,计算两次结果的相对误差各为多少?引用误差引用误差常常在多挡和连续分度的仪器中应用,这类仪器可测范围不是一个点而是一个量程,为了便于计算和划分准确度等级,引出引用误差定义:引用误差仪器示值的绝对误差与测量范围上限值或量程之比值,以百分数表示。例1-4测量上限为19613.3N的工作测力计(拉力表),在标定值(示值)为14710N的实际作用力为14788N,则此测力计在这一点的引用误差为(14710-14788)/19613.3=-0.4%。例1-5某待测的电压约为1V,现有0.5级0—300V和1.0级0-100V两个电压表,问用哪一个电压表测量较好?解用0.5级电压表测时,最大相对误差为用1.0级电压表测时,最大相对误差为此例说明,如果量程选择恰当,用1.0级仪表进行测量也会比用0.5级仪表测量时的最大相对误差还要小。因此,在选用仪表时,要纠正单纯追求难确度等级“越高越好”的倾向,而应根据被测量的大小,兼顾仪表的等级和测量上限或量程来合理地选择仪表。二.误差的来源1.测量装置误差其中包括(1)标准量具误差;(2)仪器误差;(3)附件误差.2.环境误差由于各种环境因素与规定的标准状况不一致而引起的误差,常常成为新的重要的误差源.3.方法误差由于测量方法或计算方法不完善所引起的误差.4.人员误差三.误差的表现及分类1.系统误差(systematicerrors,determinateerror)定义在相同的条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差称为系统误差.2.随机误差(accidentalerror,indeterminateerror):

定义在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化着的误差称为随机误差.随机误差的大小用标准偏差表示.3.粗大误差定义超出在规定条件下预期的误差,或称为“寄生误差”.1.4准确度、精密度和精确度不同场合---检测精度要求不同例:服装裁剪(身长/胸围)---半厘米;发动机活塞直径---微米级精度高---系统复杂---造价高例:坐标原点---真值点的位置点---多次测量结果

(1)准确度Accuracy表示测量结果中系统误差的影响程度.表征测量结果接近真值的程度(2)精密度Precision表示测量结果中随机误差的影响程度.反映测量结果的分散程度(针对重复测量而言)(3)精确度表示测量结果中系统误差和随机误差综合的影响程度.表征测量结果与真值之间的一致程度1.5误差与数据的表达一.有效数字含有误差的任何近似数,如果其绝对误差是最末位的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字.从第一位有效数字起到最末一位数字上的所有数字,不论是零或者是非零的数字,都叫有效数字。.二.数字舍入规则

对于位数很多的近似数,当有效数字的位数确定后,其后面的多余的数字应予以舍去,而保留的有效数字最末一位数字应按下面的舍入规则进行凑整:(1)若舍去部分的数值大于保留部分的末位的半个单位,则末位为1;(2)若舍去部分的数值小于保留部分的末位的半个单位,则末位不变;(3)若舍去部分的数值等于保留部分的末位的半个单位,则末位凑成偶,即当末位为偶数时末位不变,当末位为奇数时则末位加1.总结:图形+口诀(49舍,51入,50凑成偶)

例1.9按上述舍入规则,将下面各个数据保留四位有效数字进行凑整。原有数据舍人后数据3.141593.1422.717292.7174.510504.5103.215503.2166.3785016.3787.6914997.69l5.434605.435三.数据运算规则

在近似运算中,为了保证最后结果有尽可能高的精度,所有参与运算的数据在有效数字后可保留一位数字作为参考数字,或者称为安全数字.(1)在近似数加减运算时,各运算数据以小数位数最少的数据位数为准,其余各数据可多取一位小数,但最后结果应与小数位数最少的数据小数位相同.(2)在近似数乘除法运算时,各运算数据以有效位数最少的数据位数为准,其余各数据要比有效位数最少的数据位数多取一位数字,而最后结果应与有效位数最少的数据位数相同.(3)在近似数平方或开方运算时,平方相当于乘法运算,开方是平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论