版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微弱信号检测1微弱信号检测与随机噪声1.1微弱信号检测概述1.1.1微系统(1)MEMS(Micro-electroMechanicalSystems)微机电系统(2)Microsystem微系统(3)Micromachine微机器微系统的发展和应用监视系统、电子对抗系统、电子战无人机(UAV)、纳米机器人、隐形技术、武器惯性测量、武器保险/解保和引爆、平台稳定、个人/运载工具导航、条件基维护(CBM)、环境感知、大量数据存储、显示等。1.1.2微系统和外部作用1.1.3微弱信号不仅意味着信号幅度很小,主要指被噪声淹没的信号。1.1.4微弱信号检测从强噪声中提取有用信号,或用新技术、新方法提高检测系统输出信号的信噪比。1.1.5信噪比SNR和信噪改善比SNIR1.1.6检测分辨率与灵敏度检测方法检测量电压/nV电流/nA温度/K电容/pF微量分析/克分子SNIR常规检测方法微弱信号检测吉时利公司1030.110-30.110-510-810-45×10-710-60.110-510-510-8101051.2常见噪声类型1.2.1噪声特性噪声是存在于电路内部的固有的扰动信号,是一种随机信号,不能预知其精确大小。1.2.2噪声测量测量噪声电压时,测量设备的动态范围必须大于3倍的被测噪声的有效值。用电压表(交流毫伏表)测噪声时,必须使表针指示不大于1/3倍,实际测量时使表针指示小于一半量程即可。普通电压表测噪声均方根值应×1.13修正。1.2.3随机噪声分类(1)白噪声(2)限带白噪声
(3)窄带噪声
1.3随机噪声的统计特征常用的概率统计描述方法包括概率密度函数、数学期望值、方差、均方值、相关函数等。1.3.1概率密度函数(PDF)对于连续取值的随机噪声,p(x)表示噪声电压x(t)在t时刻取值为x的概率。对于所有x都有p(x)>0。t时刻噪声电压取值在a和b之间的概率为:上式说明:在概率密度函数曲线下覆盖的面积为1。(1)正态分布概率密度函数对于正态分布的随机噪声,在普通示波器上观测到的将是杂乱无章的亮带,可以用亮带的峰峰值除以6.6来粗略估计其标准差σx。对于零均值噪声,σx可以看作其有效值。测量随机噪声的放大器的动态范围应大于6.6倍的被测噪声的有效值,否则噪声峰值可能被限幅,加大测量误差。随机噪声波形x(t)与概率密度函数p(x)之间的关系(2)均匀分布概率密度函数均匀分布的噪声电压x(t)在其取值范围内各点的概率相同。数字信号处理中,A/D转换过程中的信号量化误差,可以认为是均匀分布噪声,计算机内部运算过程中由运算精度导致的舍入误差也可看作均匀分布噪声。1.3.2均值、方差和均方值(1)均值(数学期望值)电路中的噪声(具有各态遍历性质),其统计平均可用时间平均来计算。对电压或电流型随机噪声,均值表示其直流分量。(2)方差方差反映随机噪声的起伏程度,是随机噪声瞬时取值与其均值之差的平方的数学期望值。(3)均方值均方值反映随机噪声的功率,是随机噪声瞬时取值的平方的数学期望值。均值、方差和均方值之间的关系:对于零均值噪声,σx为其有效值,即均方值。电路处于稳定状态时,噪声的方差和数学期望一般不再随时间变化,噪声电压称为广义平稳随机过程。1.3.3随机噪声的相关函数相关函数Rx(τ)表示随机过程两个时间上的相关性。定义为:
Rx(τ)的重要性质:
Rx(τ)仅与时间差(即时延τ)有关,与时间起点无关;由于绝大多数噪声相互独立,故Rx(τ)随τ增加而衰减;
τ=0时,时间τ产生的噪声与其自身相关,此时Rx
(τ)具有最大值,代表噪声的均方值。(1)自相关函数随机噪声x(t)的自相关函数Rx(t1,t2)是其时域特性的平均度量,反映同一随机噪声x(t)在不同时刻t1和t2取值的相关程度。定义为:自相关函数的重要特点
对于实信号,自相关函数是τ的偶函数。当τ=0时,Rx(τ)具有最大值。
Rx(0)
反映随机噪声的功率。
如果x(t)包含某种周期性分量,则Rx(τ)包含同样周期的周期性分量。
互不相关的随机噪声之和的自相关函数等于随机噪声的自相关函数之和。对于平稳的随机噪声,Rx(τ)仅与时间差τ有关,与计算时间的起点无关。当τ→∞时,自相关函数反映随机噪声直流分量的功率。自相关函数可以应用于随机噪声,也可以应用于确定性信号。例1.利用采样保持器对零均值连续随机电压波形进行不断的采样保持,保持的时间间隔为1s。设各采样之间互不相关,采样值在-1~+1之间均匀分布。t=0之后第一次采样时间t1在0~1s之间均匀分布。采样保持器的输出波形x(t)如图,试求x(t)的功率Px和自相关函数Rx(t)的图形。(2)互相关函数与互协方差函数
互相关函数反映两个不通的随机噪声x(t)和y(t)在不通时刻t1和t2取值的相关程度,定义为:平稳随机噪声的统计特征量与时间的起点无关。令t1=t-τ,t2=t,则:用时间平均计算上式的统计平均,互相关函数可表示为:互相关函数的重要特点:互相关函数不再是偶函数,即Rxy(τ)≠
Rxy(-τ),但Rxy(τ)=Ryx(-τ)。
互相关函数的下界由下式确定:τ值很大时,互相关函数反映x(t)和y(t)均值的乘积,即:
对于平稳随机噪声,Rxy(τ)仅与时间差τ有关,与计算时间的起点无关。互协方差函数定义为:如果对于任意的t1和t2都满足Cxy(t1,t2)=0,则称x(t)与y(t)互不相关。
对于平稳随机噪声,上式可化简为:对于零均值平稳随机噪声x(t)与y(t),有则:若对所有τ都满足,则x(t)与y(t)互不相关。相关函数的上述特性对于从噪声中检测微弱信号非常有用。一般情况下,被检测的有用信号和淹没信号的噪声之间不存在相关性,因此,采用相关方法可能将有用信号从随机噪声中提取出来。相互独立
描述两路随机噪声之间的相互关系的另一术语。当随机噪声x和y相互独立时,其联合概率密度p(x,y)可以分解为:p(x,y)=p(x)p(y)上式成立时,x和y必定相互独立,且E[xy]=E[x]E[y]。相互独立的两路随机噪声一定互不相关,当互不相关不一定相互独立。例2.随机相位正弦波,φ在0~2π之间均匀分布,幅度A为常数;随机幅度正弦波,B是与φ相互独立的随机量,B的概率密度函数为:,试求x(t)和y(t)的统计特征量。解:①x(t)的均值μx:
②x(t)的方差:③x(t)的自相关函数Rx(τ):④y(t)的均值μy:∵y(t)的幅值B是高斯分布,其均值为0,方差为1。∴⑤互相关函数Rxy(τ):∵B和φ相互独立∴⑥互协方差函数Cxy(τ):(3)归一化相关函数自相关函数和互相关函数不但反映随机噪声在不同时刻取值的相关程度,而且反映随机噪声的幅度和功率,而幅度和功率受系统增益的影响。归一化相关函数消除了幅度和功率影响,能准确表现噪声在不同时刻取值的相关程度。①归一化自相关函数ρx(τ)②归一化互相关函数ρxy(τ)1.3.4随机噪声的功率谱密度函数研究周期信号或非周期信号时,信号的特征常用频谱描述,反映信号各频率分量的幅度和相位随频率变化的情况,也可用能谱或功率谱描述。随机信号既不能用确定的时间函数表示,也无法用幅度谱表示,只能用功率谱描述其频率特性。电噪声测量及计算主要关心噪声功率。(1)功率谱密度函数Sx(ω)设噪声电压x(t)的功率为Px,则噪声的功率谱密度函数定义为:自相关函数和功率谱密度函数满足傅里叶变换关系:①∵Rx(τ)是τ实偶函数,不包含相位信息,
∴Sx(ω)是ω的实偶函数,不含信号各频率分量的相位信息。②Sx(ω)区县下覆盖的面积表示噪声的功率Px。Rx(τ)和Sx(ω)的形状都与随机噪声x(t)随时间变化的速度有关,x(t)变化越快,说明其占据频带越宽,Sx(ω)也越宽;同时,对于变化较快的时域噪声,其不同时刻取值的相关性较差,Rx(τ)的峰区就较窄。宽带噪声和窄带噪声的时间函数x(t)、Rx(τ)、Sx(ω)之间的关系例3.随机噪声x(t)的自相关函数为:,其形状如图所示,求其功率谱密度函数和功率。解:①x(t)的Sx(ω):
②x(t)的功率Px:将Sx(ω)代入Px的计算公式,可得:也可利用Px=Rx(0)直接由Rx(τ)求得Px=σ2。(2)互谱密度函数Sxy(ω)平稳随机噪声x(t)和y(t)的互相关函数Rxy(τ)的傅里叶变换,称为互谱密度函数Sxy(ω)。
Sxy(ω)性质:①对称性:Sxy(ω)实部为偶函数,虚部为奇函数,其傅里叶变换共轭对称,即:②互谱不等式:对于任何频率ω,下列不等式都成立。互不相关的两路零均值随机噪声之和的功率谱密度函数等于各自的功率谱密度函数之和。1.3.5噪声源的相关性研究放大器输出时,常遇到几个噪声源同时干扰的情况。分析过程中要求比较两个噪声源是否相似,分别用u(t1)、u(t2)表示噪声函数,引入相关系数C,作为两个噪声相似性(线性相关性)的度量,定义为:如果两个噪声源部相关,则C=0;如果噪声源之间存在相关性,则C≠0。
C在-1到1之间取值,C=1时,两相关噪声线性相加;C=-1时,两相关噪声相减。对于两个互不相关的噪声源,等效噪声的均方值等于各噪声源均方值之和;即:当两个噪声源相关时,则:上式中后一项为:因此,等效噪声的均方值为:在放大器噪声中,C值不易确定,常忽略不计。可能带来一定的误差。当大量的噪声互不相关。1.4随机噪声通过电路的响应任何信号检测装置中,被测信号及噪声均要通过各种电路进行处理,才能检测到所需信号。由于通过电路时信号和噪声都要产生一定的变化,从而时信噪比有所改变。本节主要研究噪声通过电路的计算方法及其响应。1.4.1随机噪声通过线性系统的响应右图线性电路的动态特性可以用脉冲相应函数h(t)或频率响应函数H(jω)描述,它们构成一对傅里叶变换对。对于给定的输入信号x(t),其输出为:如果x(t)为确定信号,则输出y(t)也是确定信号,满足Y(jω)=X(jω)H(jω)
。若x(t)为随机噪声,则输出y(t)也是随机噪声,不再满足传递函数关系,只能用统计特性分析方法确定输入和输出的关系。自相关函数:功率谱密度函数:互谱密度函数:互相关函数:例4.白噪声x(t)输入到一阶RC低通滤波器电路,如图,x(t)的功率谱密度为:求滤波器输出y(t)的功率谱密度Sy(t)和功率Py。解:①求Sy(ω):电路频率响应函数:则幅频响应函数为:代入Sy(t)公式得:②求功率Px:
结论:电路的时间常数RC越大,输出的功率越小。1.4.2非平稳随机噪声通过线性系统的相应实际应用中,线性电路中可能包含一些电子开关,在开关刚闭合的一段时间内,电路处于过渡状态,输出噪声是非平稳的。此时不能用前述公式计算功率谱密度函数,只能用线性电路的卷积作用计算非平稳输出噪声的统计特性。右图电路中,t=0时开关闭合,随机噪声x(t)送入RC滤波器。电路处于过渡状态,输出噪声的自相关函数与计算的时间起点有关,只能求Ry(t1,t2)。考虑x(t)在t=0时加入,计算可得:例:若上图中x(t)为白噪声,其功率谱密度为:,则其自相关函数为开关在t=0时闭合,可得时刻t输出噪声的功率为:RC积分电路的频率响应函数和冲击响应函数分别为:∴1.4.3随机噪声通过非线性系统的相应如果系统的输入量之和不能产生相应的输出量之和,则为非线性系统。非线性电路在信号检测装置中十分重要,是信号处理的重要手段。如二极管检波器、鉴频器、混频电路都是非线性电路。(1)平方律检波器输出信号y(t)与输入信号x(t)的关系为:设输入与输出信号的概率密度函数分别为Px(x)和Py(y),则:
输出y(t)的功率谱密度函数Sy(ω)为:信号和噪声经过平方律检波器后,将出现信号和噪声相互作用形成的相关函数项,这是非线性电路相应中的固有特性。随机过程通过非线性电路后,其功率密度函数将有很大变化,最主要的是产生了很多新的功率谱密度分量,是线性电路所不具有的,这些分量会对噪声中提取微弱信号带来很大的影响。(2)过零检测器过零检测器用于提取所及噪声的符号函数,应用于机型相关器,其输出信号y(t)与输入信号x(t)的关系为:经过过零检测器后,随机噪声的幅度信息丢失了,只用二值函数+1和-1表示符号,即随机噪声被量化成了1bit。(3)全波检波器全波检波器输出信号y(t)与输入信号x(t)的关系为:对于零均值高斯噪声,全波检波器输出均值正比于输入噪声的有效值。全波检波器输出功率等于输入功率。1.5等效噪声带宽1.5.1定义应用于确定性信号的线性电路,带宽的典型定义是半功率点之间的频率间隔,即常说的线性电路的-3dB带宽。随机噪声的电压幅度不确定,主要考虑系统输
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(陕) 049-2021 变压器交流阻抗参数测试仪校准规范
- 农业企业管理流程培训
- 学习投资风格与风险管理计划
- 幼儿园游戏规则与礼仪教育方案计划
- 主管的亲和力提升建议计划
- 学校教学工作总体计划
- 包装材料加工机械相关项目投资计划书范本
- 一卡通管理系统相关行业投资规划报告
- 射频消融仪相关项目投资计划书
- 体外诊断仪器行业相关投资计划提议
- 2024年南京信息职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 2024年汽配行业分析报告
- 2024年房地产经纪协理考试题库附参考答案(综合题)
- 中药在护理中的应用
- 电工基础技能实训指导书
- 脊柱外科临床指南
- 万千教育学前透视幼儿的户外学习
- 《抗菌药物知识培训》课件
- 2024年北京市安全员A证考试题库附答案
- 医疗专业人员的情绪管理培训
- 森林法培训课件
评论
0/150
提交评论