![综合题目销售额_第1页](http://file4.renrendoc.com/view/4c81a87160a04a3ae34ea0806d65c897/4c81a87160a04a3ae34ea0806d65c8971.gif)
![综合题目销售额_第2页](http://file4.renrendoc.com/view/4c81a87160a04a3ae34ea0806d65c897/4c81a87160a04a3ae34ea0806d65c8972.gif)
![综合题目销售额_第3页](http://file4.renrendoc.com/view/4c81a87160a04a3ae34ea0806d65c897/4c81a87160a04a3ae34ea0806d65c8973.gif)
![综合题目销售额_第4页](http://file4.renrendoc.com/view/4c81a87160a04a3ae34ea0806d65c897/4c81a87160a04a3ae34ea0806d65c8974.gif)
![综合题目销售额_第5页](http://file4.renrendoc.com/view/4c81a87160a04a3ae34ea0806d65c897/4c81a87160a04a3ae34ea0806d65c8975.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3实际问题与二次函数(1)-202462-4xy⑴若-3≤x≤3,该函数的最大值、最小值分别为()、()。
⑵又若0≤x≤3,该函数的最大值、最小值分别为()、()。求函数的最值问题,应注意什么?55555132、图中所示的二次函数图像的解析式为:
1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;⑵y=x2+4x1、某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)设后来该商品每件降价a元,商场一天可获利润w元.求出解析式
(2)设销售单价为x(x≥80)元,销售量为y件.求出y与x的函数关系式.(3)当销售单价为多少元时,日销售额为18000元?(4)当销售单价为多少元时,才能每天获得最大利润?最大利润是多少?(5)若使得利润不低于2000,是确定x的取值范围2、某水果批发商场经销一种高档水果,如果每千克进价10元,售价20元,每天可售出100千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)设后来该商品每件涨价a元,商场一天可获利润w元.求出解析式
(2)设销售单价为x(x≥20)元,销售量为y件.求出y与x的函数关系式.(3)当销售单价为多少元时,月销售额1320元,(4)当销售单价为多少元时,才能获得最大利润?最大利润是多少?3.山西特产专卖店销售核桃,其进价为每千克20元,按每千克30元出售,平均每天可售出100千克,后来经过市场调查发现,单价每涨价2元,则平均每天的销售可减少10千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)设后来该商品每件涨价a元,商场一天可获利润w元.求出解析式
(2)设销售单价为x(x≥30)元,销售量为y千克.求出y与x的函数关系式.(3)当销售单价为多少元时,销售额为2000元(4)当销售单价为多少元时,才能获得最大利润?最大利润是多少?2.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天的销售量t(件)与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。(1).写出商场卖这种服装每天销售利润w(元)与每件的销售价x(元)间的函数关系式(2).通过对所得函数关系式进行配方,指出商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?(三)销售问题
有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).⑴设x天后每千克活蟹市场价为P元,写出P关于x的函数关系式.⑵如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式。⑶该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?思考解:①由题意知:P=30+x.②由题意知:死蟹的销售额为200x元,活蟹的销售额为(30+x)(1000-10x)元。
驶向胜利的彼岸∴Q=(30+x)(1000-10x)+200x=--10x2+900x+30000③设总利润为W=Q-30000-400x=-10x2+500x=-10(x-25)2+6250∴当x=25时,总利润最大,最大利润为6250元。4、已知某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出18件,如何定价才能使利润最大?
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场分析:调整价格包括涨价和降价两种情况先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖
件,实际卖出
件,销额为
元,买进商品需付
元因此,所得利润为
元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即(0≤X≤30)(0≤X≤30)可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.所以,当定价为65元时,利润最大,最大利润为6250元在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润答:定价为元时,利润最大,最大利润为6050元做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?(0≤x≤20)若该商店试销所获得的利润不低于20的取值范围0元,确定单价x
某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平均每天可销售100箱.价格每箱降低1元,平均每天多销售25箱;价格每箱升高1元,平均每天少销售4箱。如何定价才能使得利润最大?
练一练若生产厂家要求每箱售价在45—55元之间。如何定价才能使得利润最大?(为了便于计算,要求每箱的价格为整数)
若日销售量y是销售价x的一次函数。
(1)求出日销售量y(件)与销售价x(元)的函数关系式;(6分)
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(6分)
某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:中考题选练(2)设每件产品的销售价应定为x元,所获销售利润为w元。则
产品的销售价应定为25元,此时每日获得最大销售利润为225元。则解得:k=-1,b=40。1分5分6分7分10分12分
(1)设此一次函数解析式为。所以一次函数解析为。设旅行团人数为x人,营业额为y元,则旅行社何时营业额最大1.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?
某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满。当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?解:设每个房间每天增加x元,宾馆的利润为y元Y=(50-x/10)(180+x)-20(50-x/10)Y=-1/10x2+34x+8000大显身手1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?(三)销售问题
某个商店的老板,他最近进了价格为30元的书包。起初以40元每个售出,平均每个月能售出200个。后来,根据市场调查发现:这种书包的售价每上涨1元,每个月就少卖出10个。现在请你帮帮他,如何定价才使他的利润最大?
某个商店的老板,他最近进了价格为30元的书包。起初以40元每个售出,平均每个月能售出200个。后来,根据市场调查发现:这种书包的售价每上涨1元,每个月就少卖出10个。现在请你帮帮他,如何定价才使他的利润达到2160元?某商场推销一种书包,进价为30元,在试销中发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 帆布在家庭园艺中的创意应用考核试卷
- 工业自动化中的生物传感器技术考核试卷
- 二零二五年度民间借贷论文跨文化比较与研究合同
- 2025-2030年图书馆静音管理机器人企业制定与实施新质生产力战略研究报告
- 2025-2030年呼吸系统疾病治疗仪行业跨境出海战略研究报告
- 2025-2030年户外轻食冻干意面企业制定与实施新质生产力战略研究报告
- 2025-2030年发光卡牌夜间对战企业制定与实施新质生产力战略研究报告
- 2025-2030年投影仪镜头清洁套装行业深度调研及发展战略咨询报告
- 二零二五年度门店知识产权保护合作协议
- 批发行业互联网+的商业模式创新考核试卷
- 高中体育与健康-足球-脚内侧传球射门技术(第二课时)教学课件设计
- 2023年新改版教科版科学三年级下册活动手册参考答案(word可编辑)
- 《淄博张店区停车问题治理现状及优化对策分析【开题报告+正文】15000字 》
- 常用电子元器件基础知识演示
- GB/T 32918.4-2016信息安全技术SM2椭圆曲线公钥密码算法第4部分:公钥加密算法
- 2023年药事法规教学案例库及案例分析
- 北京市水务安全生产风险评估指南
- 吸引器教学讲解课件
- 医学心理学人卫八版66张课件
- 仿古建筑施工常见质量通病及防治措施
- 普通冲床设备日常点检标准作业指导书
评论
0/150
提交评论