利用频率估计概率第1课时 已修_第1页
利用频率估计概率第1课时 已修_第2页
利用频率估计概率第1课时 已修_第3页
利用频率估计概率第1课时 已修_第4页
利用频率估计概率第1课时 已修_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

25.3利用频率估计概率第一课时

重点:区分等可能事件和不等可能事件及两种情况概率的求法。普查为了一定的目的,而对考察对象进行全面的调查,称为普查;频数在考察中,每个对象出现的次数称为频数,频率而每个对象出现的次数与总次数的比值称为频率.总体所要考察对象的全体,称为总体,个体

而组成总体的每一个考察对象称为个体;抽样调查从总体中抽取部分个体进行调查,这种调查称为抽样调查;样本从总体中抽取的一部分个体叫做总体的一个样本;知识回顾必然事件:不可能事件:可能性:不确定事件发生的可能性是有大小的。0½(50%)1(100%)不可能发生可能发生必然发生随机事件(不确定事件):有些事件我们事先无法肯定它会不会发生,这些事件称为不确定事件。回顾生活中有些事件我们事先肯定它一定会发生,这些事件称为必然事件有些事情我们能肯定它一定不会发生,这些事件称为不可能事件;}确定的事件概率事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),

记作P(必然事件)=1;不可能事件发生的概率为0,

记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0<P(不确定事件)<1.如果A为随机事件(不确定事件),

那么0<P(A)<1.用列举法求概率的条件是什么?(1)实验的所有结果是有限个(n)(2)各种结果的可能性相等.当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?从一定高度落下的图钉,会有几种可能的结果?它们发生的可能性相等吗?任意写三个正整数,一定能够组成三角形吗?能够组成三角形的概率有多大?思考?上面的问题,所有可能结果不是有限个,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等,

事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.探究:投掷硬币时,国徽朝上的可能性有多大?在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?这是我们下面要讨论的问题。实验:让学生以同桌为一小组,每人抛掷50次,记录正面朝上的次数。抛掷次数(n)2048404012000300002400072088正面朝上数(m)106120486019149841201236124频率(m/n)0.5180.5060.5010.49960.50050.5011历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示抛掷次数n频率m/n0.512048404012000240003000072088实验结论:当抛硬币的次数很多时,出现下面的频率值是稳定的,接近于常数0.5,在它附近摆动.数学史实人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.频率稳定性定理

结论

瑞士数学家雅各布.伯努利(1654-1705)最早阐明了可以由频率估计概率即:

在相同的条件下,大量的重复实验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事件发生的概率1、当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.2、在相同情况下随机的抽取若干个体进行实验,进行实验统计.并计算事件发生的频率根据频率估计该事件发生的概率.3、用频率估计概率,虽不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得苛求概率的随机事件的范围扩大,如抛掷一枚图钉或一枚质地不均匀的骰子,不能用列举法(列表法或树形图法)求“针尖朝上”或“出现6点”的概率,但可以通过大量重复实验估计出它们的概率。可见,概率是针对大量重复实验而言的。4、等可能事件是在出现机会相等下进行的,不等可能事件时出现机会不相等的情况下进行的5、不相等事件的求法:用频率来估计概率总结语:随机事件及其概率某批乒乓球产品质量检查结果表:

当抽查的球数很多时,抽到优等品的频率接近于常数0.95,在它附近摆动。0.9510.9540.940.970.920.9优等品频率200010005002001005019029544701949245优等品数抽取球数

很多常数某种油菜籽在相同条件下的发芽试验结果表:

当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,在它附近摆动。很多常数随机事件及其概率事件

的概率的定义:

一般地,在大量重复进行同一试验时,事件发生的频率(n为实验的次数,m是事件发生的频数)总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记做.

注:当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时由定义可知:

(1)求一个事件的概率的基本方法是通过大量的重复试验;

(3)概率是频率的稳定值,而频率是概率的近似值;

(4)概率反映了随机事件发生的可能性的大小;

(5)必然事件的概率为1,不可能事件的概率为0.因此.

(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;例1:对一批衬衫进行抽查,结果如下表:抽取件数n501002005008001000优等品件数m

42

88

176445

724

901优等品频率m/n0.840.880.880.890.9010.905求抽取一件衬衫是优等品的概率约是多少?抽取衬衫2000件,约有优质品几件?0.89某射手进行射击,结果如下表所示:射击次数n

20100200500800击中靶心次数m13

58104255404击中靶心频率m/n例2填表(2)这个射手射击一次,击中靶心的概率是多少?0.5(3)这射手射击1600次,击中靶心的次数是

。8000.650.580.520.510.552.必然事件的概率为_____,不可能事件的概率为______,不确定事件的概率范围是______.1.任意抛掷一枚均匀的骰子,骰子停止转动后,朝上的点数

可能,有哪些可能

.练习:抛掷结果5次50次300次800次3200次6000次9999次出现正面的频数131135408158029805006出现正面的频率20%62%45%51%49.4%49.7%50.1%3.表中是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.

(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次时,得到______次反面,反面出现的频率是______.(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______.那么,也就是说机器人抛掷完9999次时,得到_______次反面,反面出现的频率是________.480%500650.1%499449.9%4.

对某电视机厂生产的电视机进行抽样检测的数据如下:

抽取台数501002003005001000优等品数4092192285478954(1)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少?

解:⑴各次优等品频率依次为:

0.8,0.92,0.96,0.95,0.956,0.9540.954.笼子里关着一只兔子(如图),兔子的主人决定把兔子放归大自然,将笼子所有的门都打开。兔子要先经过第一道(A,B,C),再经过第二道门(D或E)才能出去。问兔子走出笼子的路线(经过的两道门)有多少种不同的可能?ACBDE练习1.抛掷一只纸杯的重复试验的结果如下表:抛掷次数100150200250300杯口朝上频数20365060频率0.20.240.250.25(1)在表内的空格初填上适当的数(2)任意抛掷一只纸杯,杯口朝上的概率为

.课后巩固:4.对某服装厂的成品西装进行抽查,结果如下表:抽检件数100200300400正品频数97198294392频率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论