




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为()A. B. C. D.2.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A. B. C. D.3.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A. B. C. D.4.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.55.如果代数式有意义,则实数x的取值范围是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥36.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A. B.C. D.7.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=CF B.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个 D.tan∠CAD=8.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE9.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC10.下列运算正确的是()A. B.C. D.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为()A.8cm B.4cm C.4cm D.5cm12.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.14.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.15.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.16.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.17.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.18.________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.20.(6分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价(元)取整数,用(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出与的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.21.(6分)如图,在△ABC中,∠C=90°,BC=4,AC=1.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN与△ABC重合部分图形的周长为y.(1)AB=.(2)当点N在边BC上时,x=.(1)求y与x之间的函数关系式.(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.22.(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310…日销售量(n件)198196194?…②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.23.(8分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.(1)A点坐标为;B点坐标为;F点坐标为;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.24.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?25.(10分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.(1)证明:DE是⊙O的切线;(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,(3)若⊙O的半径r=5,sinA=,求线段EF的长.26.(12分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).27.(12分)计算:2﹣1+|﹣|++2cos30°
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´【详解】先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.2、B【解析】
先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.【详解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故选B.【点睛】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.3、D【解析】
连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等边三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等边三角形,则∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D.【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.4、D【解析】
根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为1+6+2+3+35B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5、C【解析】
根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.6、C【解析】
根据左视图是从物体的左面看得到的视图解答即可.【详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C.【点睛】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.7、D【解析】
由又AD∥BC,所以故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;
根据相似三角形的判定即可求解,故C正确,不符合题意;
由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正确,不符合题意;B.过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C.图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意;D.设AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D错误,符合题意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.8、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.9、C【解析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.10、D【解析】
由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.【详解】解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
C、(-a)3=≠,故原题计算错误;
D、2a2•3a3=6a5,故原题计算正确;
故选:D.【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.11、C【解析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴故选:C.【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.12、D【解析】
根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正确;
如图,过点M作MN⊥AB于N,
则即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根据勾股定理,BM=过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=a-=,MK=-a=,
在Rt△MKO中,MO=根据正方形的性质,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、18。【解析】根据二次函数的性质,抛物线的对称轴为x=3。∵A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴。∴A,B关于x=3对称。∴AB=6。又∵△ABC是等边三角形,∴以AB为边的等边三角形ABC的周长为6×3=18。14、x≥1【解析】
把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1≥mx+n的解集是:x≥1,故答案为x≥1.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.15、2+4【解析】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.【详解】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周长的最小值=2+4,故答案为:2+4.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.16、115°【解析】
根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,
由题意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四边形ABCD是圆内接四边形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.17、(,0)【解析】试题解析:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故答案为(,0).18、1【解析】
先将二次根式化为最简,然后再进行二次根式的乘法运算即可.【详解】解:原式=2×=1.故答案为1.【点睛】本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)∠DOA=100°;(2)证明见解析.【解析】试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA的度数;(2)连接OE,利用SSS证明△EAO≌△EDO,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED与⊙O相切.试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)证明:连接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直线ED与⊙O相切.考点:圆周角定理;全等三角形的判定及性质;切线的判定定理20、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】
(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.【详解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依题意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣2,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.21、(1)2;(2);(1)详见解析;(4)满足条件的x的值为.【解析】
(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.【详解】解:(1)在中,,故答案为2.(2)如图1中,∴四边形PAMN是平行四边形,当点在上时,,.(1)①当时,如图1,.②当时,如图2,y③当时,如图1,(4)如图4中,当点是中点时,满足条件.如图2中,当点是中点时,满足条件..综上所述,满足条件的x的值为或.【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.22、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1.(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=-120x+12000,∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.23、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.【详解】(1)针对于抛物线,令x=0,则,∴,令y=0,则,解得,x=1或x=3,∴,综上所述:,,;(2)由(1)知,,,∵BM=FM,∴,∵,∴直线AC的解析式为:,联立抛物线解析式得:,解得:或,∴,如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,∴,解得:,∴,过H作l∥AC,∴直线l的解析式为,联立抛物线解析式,解得,∴,即:在直线AC下方的抛物线上不存在点P,使;(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设,,直线DE的解析式为,联立直线DE的解析式与抛物线解析式联立,得,∴,,∵DG⊥x轴,∴DG∥OM,∴,∴,即,∴,同理可得∴,∴,即,∴,∴直线DE的解析式为,∴直线DE必经过一定点.【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.24、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2+2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】
(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得解得:∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2+2000)(3)W=-2(x-65)2+2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.25、(1)见解析(2)8(3)【解析】分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国标准螺母行业投资前景及策略咨询研究报告
- 2025至2030年中国柔性快速伸缩管道连接器行业发展研究报告
- 2025至2030年中国板料折弯压力机上下模具市场分析及竞争策略研究报告001
- 2025至2030年中国机织衣领行业发展研究报告
- 2025至2030年中国机制木碳数据监测研究报告001
- 2025至2030年中国木制飞机市场分析及竞争策略研究报告
- 直播时代如何防沉迷
- 2025至2030年中国智能网集中监测系统行业发展研究报告
- 2025至2030年中国智能信号显示器行业投资前景及策略咨询报告
- 2025至2030年中国普通不粘铝锅市场调查研究报告
- (完整版)人教版小学3-6年级英语单词表-可直接打印
- 公司组织架构图(可编辑模版)
- 机电安装总进度计划横道图
- 起重吊装作业安全综合验收记录表
- 常规检泵设计培训
- 园林绿化工程监理实施细则(完整版)
- 梦想(英语演讲稿)PPT幻灯片课件(PPT 12页)
- 中国联通员工绩效管理实施计划方案
- 法院刑事审判庭速裁庭廉政风险防控责任清单
- IEC60335-1(中文)
- 土方填筑碾压试验报告
评论
0/150
提交评论