2022-2023学年湖北省襄阳市南漳县中考数学模拟预测题含解析_第1页
2022-2023学年湖北省襄阳市南漳县中考数学模拟预测题含解析_第2页
2022-2023学年湖北省襄阳市南漳县中考数学模拟预测题含解析_第3页
2022-2023学年湖北省襄阳市南漳县中考数学模拟预测题含解析_第4页
2022-2023学年湖北省襄阳市南漳县中考数学模拟预测题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知A(,),B(2,)两点在双曲线上,且,则m的取值范围是()A. B. C. D.2.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长()A. B. C. D.3.如图的立体图形,从左面看可能是()A. B.C. D.4.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A. B. C. D.5.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m> B.m>4C.m<4 D.<m<46.如图,直线y=34x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=3A.17 B.16 C.17.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.山西有着悠久的历史,远在100多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo图案中,是轴对称图形的共有()A. B. C. D.9.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是()A. B. C. D.10.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5二、填空题(共7小题,每小题3分,满分21分)11.下列说法正确的是_____.(请直接填写序号)①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y=的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.12.函数y=中,自变量x的取值范围是_________.13.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.14.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.15.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.16.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.17.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.三、解答题(共7小题,满分69分)18.(10分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)19.(5分)(1)计算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.20.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.()请直接写出袋子中白球的个数.()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)21.(10分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m=;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?23.(12分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.24.(14分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

∵A(,),B(2,)两点在双曲线上,∴根据点在曲线上,点的坐标满足方程的关系,得.∵,∴,解得.故选D.【详解】请在此输入详解!2、D【解析】

过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分别是△OAB和△OCD的高,∴,即,解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.3、A【解析】

根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.4、D【解析】

左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【详解】请在此输入详解!5、B【解析】

根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式组的解集是m>1,

即m的取值范围是m>1.

故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、A【解析】

过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=34∴设N的坐标是(x,34则DN=34y=34当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.7、B【解析】

直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.8、D【解析】

根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.

故选D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、B【解析】

根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.【详解】(1)当0≤x≤2时,BQ=2x当2≤x≤4时,如下图由上可知故选:B.【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.10、B【解析】

根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,

∴-2+m=−,

解得,m=-1,

故选B.二、填空题(共7小题,每小题3分,满分21分)11、②④⑤【解析】

根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.【详解】①“若a>b,当c<0时,则<,故①是假命题;②六边形的内角和是其外角和的2倍,根据②真命题;③函数y=的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;故答案为②④⑤【点睛】本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.12、x≤1且x≠﹣1【解析】

由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13、1【解析】

根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=1,故答案为1.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14、1.267×102【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.【详解】解:126700=1.267×102.故答案为1.267×102.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15、同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定16、8【解析】

主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.17、1.【解析】

根据立体图形画出它的主视图,再求出面积即可.【详解】主视图如图所示,∵主视图是由1个棱长均为1的正方体组成的几何体,∴主视图的面积为1×12=1.故答案为:1.【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.三、解答题(共7小题,满分69分)18、此车没有超过了该路段16m/s的限制速度.【解析】分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.详解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.19、(1)-7;(2),.【解析】

(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;

(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】(1)原式=3−4×+1−9=−7;(2)原式=1−=1−==−;∵|x−2|+(2x−y−3)2=1,∴,解得:x=2,y=1,当x=2,y=1时,原式=−.故答案为(1)-7;(2)−;−.【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.20、(1)袋子中白球有2个;(2).【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.21、(1)B(-1.2);(2)y=;(3)见解析.【解析】

(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB为等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵抛物线过O点,∴可设抛物线解析式为y=ax2+bx,把A、B两点坐标代入可得,解得,∴经过A、B、O原点的抛物线解析式为y=x2-x;(3)∵四边形ABOP,∴可知点P在线段OA的下方,过P作PE∥y轴交AO于点E,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=,∴直线AO解析式为y=x,设P点坐标为(t,t2-t),则E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO•BO=,∴S四边形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.22、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论