2022-2023学年黑龙江省哈尔滨市哈工大附中中考数学最后冲刺模拟试卷含解析_第1页
2022-2023学年黑龙江省哈尔滨市哈工大附中中考数学最后冲刺模拟试卷含解析_第2页
2022-2023学年黑龙江省哈尔滨市哈工大附中中考数学最后冲刺模拟试卷含解析_第3页
2022-2023学年黑龙江省哈尔滨市哈工大附中中考数学最后冲刺模拟试卷含解析_第4页
2022-2023学年黑龙江省哈尔滨市哈工大附中中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A.27.1×102B.2.71×103C.2.71×104D.0.271×1052.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<43.如图,⊙O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB与OC互相垂直 D.AB与OC互相平分4.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A. B. C. D.5.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40° B.60° C.80° D.100°6.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)7.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B.C. D.8.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.59.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是()A. B. C. D.10.﹣的绝对值是()A.﹣ B. C.﹣2 D.2二、填空题(共7小题,每小题3分,满分21分)11.分解因式:2a4﹣4a2+2=_____.12.在函数y=x-4中,自变量x的取值范围是_____.13.如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若∠ACB=90°,则点C的坐标为______.14.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.15.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.16.计算:﹣|﹣2|+()﹣1=_____.17.化简:x2-4x+4x三、解答题(共7小题,满分69分)18.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?19.(5分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.20.(8分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.21.(10分)如图,己知AB是⊙C的直径,C为圆上一点,D是BC的中点,CH⊥AB于H,垂足为H,连OD交弦BC于E,交CH于F,联结EH.(1)求证:△BHE∽△BCO.(2)若OC=4,BH=1,求22.(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求与的函数关系式,并写出的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.23.(12分)如图,在平行四边形中,的平分线与边相交于点.(1)求证;(2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形.24.(14分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27100用科学记数法表示为:.2.71×104.故选:C.【点睛】本题考查科学记数法—表示较大的数。2、A【解析】

根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【详解】移项得:−x>3−1,合并同类项得:−x>2,系数化为1得:x<-4.故选A.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.3、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等边三角形,∴OA=AC=OC=BC=OB,∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)∵AB与OC互相平分,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.4、C【解析】

根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5、D【解析】

根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.6、A【解析】

首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.【详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4),故选A.【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.7、A【解析】

画出从正面看到的图形即可得到它的主视图.【详解】这个几何体的主视图为:故选:A.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.8、B【解析】

当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.9、A【解析】

根据菱形的判定方法一一判定即可【详解】作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意故选A【点睛】本题考查平行四边形的判定,能理解每个图的作法是本题解题关键10、B【解析】

根据求绝对值的法则,直接计算即可解答.【详解】,故选:B.【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1(a+1)1(a﹣1)1.【解析】

原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案为:1(a+1)1(a﹣1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.12、x≥4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.13、(2,0)【解析】

根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再根据Rt△ABC中,OC=AB=2,即可得到点C的坐标【详解】如图所示,∵直线y=x与双曲线y=交于A,B两点,OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵点C在x轴的正半轴上,∴C(2,0),故答案为(2,0).【点睛】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长.14、【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣1,故答案为﹣1.考点:正数和负数15、4【解析】

根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.【详解】如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即当x=时,代数式有最小值,此时为:.故答案是:4.【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.16、﹣1【解析】

根据立方根、绝对值及负整数指数幂等知识点解答即可.【详解】原式=-2-2+3=-1【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.17、﹣x-2x【解析】

直接利用分式的混合运算法则即可得出.【详解】原式====-x-2故答案为:-x-2【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.三、解答题(共7小题,满分69分)18、(1)第一批饮料进货单价为8元.(2)销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.19、y=x﹣5【解析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.详解:(1)∵二次函数y=(x﹣1)2﹣4,∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,故答案为y=x﹣5;(2)∵二次函数y=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),∵二次函数y=(x﹣1)2﹣4,∴其伴生一次函数的表达式为y=x﹣5,∴当x=1时,y=1﹣5=﹣4,∴(1,﹣4)在直线y=x﹣5上,即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)∵二次函数y=m(x﹣1)2﹣4m,∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,∵P点的横坐标为n,(n>2),∴P的纵坐标为m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x轴,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵线段PQ的长为,∴(n﹣1)2+1﹣n=,∴n=.点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.20、(1)证明见解析;(2).【解析】

(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=.【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.21、(1)证明见解析;(2)EH=【解析】

(1)由题意推出∠EHB=∠OCB,(2)结合△BHE~△BCO,推出BHBC【详解】(1)证明:∵OD为圆的半径,D是的中点,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【点睛】本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.22、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设,将点(10,200)、(15,150)分别代入,则,解得,∴,∵蜜柚销售不会亏本,∴,又,∴,∴,∴;(2)设利润为元,则==,∴当时,最大为1210,∴定价为19元时,利润最大,最大利润是1210元;(3)当时,,110×40=4400<4800,∴不能销售完这批蜜柚.【点睛】本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.23、(1)见解析;(2)菱形.【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论