2022-2023学年广东省广州市绿翠现代实验校中考数学模拟精编试卷含解析_第1页
2022-2023学年广东省广州市绿翠现代实验校中考数学模拟精编试卷含解析_第2页
2022-2023学年广东省广州市绿翠现代实验校中考数学模拟精编试卷含解析_第3页
2022-2023学年广东省广州市绿翠现代实验校中考数学模拟精编试卷含解析_第4页
2022-2023学年广东省广州市绿翠现代实验校中考数学模拟精编试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15π B.24π C.20π D.10π2.计算的结果是()A.a2 B.-a2 C.a4 D.-a43.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.54.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣45.如图所示的图形,是下面哪个正方体的展开图()A. B. C. D.6.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣47.如图所示的几何体的俯视图是()A. B. C. D.8.下图是由八个相同的小正方体组合而成的几何体,其左视图是()A. B. C. D.9.将抛物线y=-2xA.y=-2(x+1)2C.y=-2(x-1)210.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30° B.50° C.60° D.70°二、填空题(本大题共6个小题,每小题3分,共18分)11.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________12.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.13.如图,已知,D、E分别是边BA、CA延长线上的点,且如果,,那么AE的长为______.14.如果m,n互为相反数,那么|m+n﹣2016|=___________.15.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.16.如果不等式组的解集是x<2,那么m的取值范围是_____三、解答题(共8题,共72分)17.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)18.(8分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.19.(8分)已知,如图,是的平分线,,点在上,,,垂足分别是、.试说明:.20.(8分)计算:2sin30°﹣|1﹣|+()﹣121.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.22.(10分)化简,再求值:23.(12分)先化简再求值:÷(﹣1),其中x=.24.今年3月12日植树节期间,学校预购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.2、D【解析】

直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.3、C【解析】

如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.【详解】如图,连接BD、CD在和中,同理可得:,即为⊙O的直径故选:C.【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.4、B【解析】

利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、D【解析】

根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A.因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B.因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B;C.因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D.因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D;故选D.【点睛】本题考查了学生的空间想象能力,解决本题的关键突破口是掌握正方体的展开图特征.6、C【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】14400=1.44×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、D【解析】

找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.8、B【解析】

解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.9、C【解析】试题分析:∵抛物线y=-2x2+1向右平移1个单位长度,∴平移后解析式为:y=-2考点:二次函数图象与几何变换.10、C【解析】试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C.考点:圆周角定理二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】由图形可得:12、(,0)【解析】试题解析:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故答案为(,0).13、【解析】

由DE∥BC不难证明△ABC△ADE,再由,将题中数值代入并根据等量关系计算AE的长.【详解】解:由DE∥BC不难证明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案为.【点睛】本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.14、1.【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n﹣1|,∵m,n互为相反数,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案为1.考点:1.绝对值的意义;2.相反数的性质.15、【解析】

由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.【详解】∵四边形ABCD、CEFG均为正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面积是=DF•DI=,故答案为:.【点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.16、m≥1.【解析】分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.详解:解第一个不等式得,x<1,∵不等式组的解集是x<1,∴m≥1,故答案为m≥1.点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.三、解答题(共8题,共72分)17、客车不能通过限高杆,理由见解析【解析】

根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=,求出DF的值,即可判断.【详解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=,∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.18、(1)见解析;(2)1【解析】

(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;

(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.【详解】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵EF为切线,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中点,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:连接BC交OD于H,如图,∵D是弧BC的中点,∴OD⊥BC,∴CH=BH,∴OH为△ABC的中位线,∴,∴HD=2.5-1.5=1,∵AB为⊙O的直径,∴∠ACB=90°,∴四边形DHCE为矩形,∴CE=DH=1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.19、见详解【解析】

根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD为∠ABC的平分线,

∴∠ABD=∠CBD,

在△ABD和△CBD中,∴△ABD≌△CBD(SAS),

∴∠ADB=∠CDB,

∵点P在BD上,PM⊥AD,PN⊥CD,

∴PM=PN.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.20、4﹣【解析】

原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.【详解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.21、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】

(1)根据题意,本次接受调查的学生总人数为各个金额人数之和,用总概率减去其他金额的概率即可求得m值.(2)平均数为一组数据中所有数据之和再除以这组数据的个数;众数是在一组数据中出现次数最多的数;中位数是将一组数据按大小顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数,据此求解即可.(3)根据样本估计总体,用“每天在校体育锻炼时间大于等于1.5h的人数”的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.22、【解析】试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.试题解析:原式==当时,原式=.考点:1.二次根式的化简求值;2.分式的化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论