2022届云南省昆明市十县达标名校中考五模数学试题含解析_第1页
2022届云南省昆明市十县达标名校中考五模数学试题含解析_第2页
2022届云南省昆明市十县达标名校中考五模数学试题含解析_第3页
2022届云南省昆明市十县达标名校中考五模数学试题含解析_第4页
2022届云南省昆明市十县达标名校中考五模数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.等腰三角形一边长等于5,一边长等于10,它的周长是()A.20 B.25 C.20或25 D.152.最小的正整数是()A.0B.1C.﹣1D.不存在3.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是()A.a<0 B.b2-4ac<0 C.当-1<x<3时,y>0 D.-=14.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-25.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.6.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A.甲 B.乙C.丙 D.丁7.若|a|=﹣a,则a为()A.a是负数 B.a是正数 C.a=0 D.负数或零8.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为()A.6 B.8 C.10 D.129.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是()A.6π B.12π C.18π D.24π10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S2二、填空题(共7小题,每小题3分,满分21分)11.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.12.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.13.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.14.方程=1的解是___.15.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.16.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.17.因式分解:3x2-6xy+3y2=______.三、解答题(共7小题,满分69分)18.(10分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?19.(5分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE,试判断CE和DF的位置关系,并说明理由.20.(8分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:

设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当时为“基本称职”,当时为“称职”,当时为“优秀”.根据以上信息,解答下列问题:补全折线统计图和扇形统计图;求所有“称职”和“优秀”的销售员销售额的中位数和众数;为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.21.(10分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G(1)求证:直线AB是⊙O的切线;(2)求证:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.22.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)23.(12分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.24.(14分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】当5为腰时,三边长为5、5、10,而,此时无法构成三角形;当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长故选B.2、B【解析】

根据最小的正整数是1解答即可.【详解】最小的正整数是1.故选B.【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答.3、D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:∵抛物线开口向上,∴∴A选项错误,∵抛物线与x轴有两个交点,∴∴B选项错误,由图象可知,当-1<x<3时,y<0∴C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为即-=1,∴D选项正确,故选D.4、A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.5、D【解析】

根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.7、D【解析】

根据绝对值的性质解答.【详解】解:当a≤0时,|a|=-a,∴|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.8、B【解析】

由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出.【详解】∵矩形AEHC是由三个全等矩形拼成的,

∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,

∴四边形BEFD、四边形DFGC是平行四边形,

∴BE∥DF∥CG,

∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,

∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故选:B.【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.9、A【解析】

根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=.故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.10、D【解析】

根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【详解】∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即时,,此时3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能确定3S1与1S1的大小,故选项A不符合题意,选项B不符合题意.若1AD<AB,即时,,此时3S1<S1+S△BDE<1S1,故选项C不符合题意,选项D符合题意.故选D.【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.二、填空题(共7小题,每小题3分,满分21分)11、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①当3是直角边时,∵△ABC最小的角为A,∴tanA=;②当3是斜边时,根据勾股定理,∠A的邻边=,∴tanA=;所以tanA的值为或.12、【解析】

过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.13、1【解析】

估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14、x=﹣4【解析】

分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2x=x﹣1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15、y=x.(答案不唯一)【解析】

首先设一次函数解析式为:y=kx+b(k≠0),b取任意值后,把(1,1)代入所设的解析式里,即可得到k的值,进而得到答案.【详解】解:设直线的解析式y=kx+b,令b=0,将(1,1)代入,得k=1,此时解析式为:y=x.由于b可为任意值,故答案不唯一.故答案为:y=x.(答案不唯一)【点睛】本题考查了待定系数法求一次函数解析式.16、(2,2).【解析】

连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.【详解】如图,连结OA,OA==5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.故答案为:(2,2).【点睛】考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.17、3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用三、解答题(共7小题,满分69分)18、(1);(1)时,取最大值,为.【解析】

(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即可得z=,利用矩形的面积公式即可得出解析式;

(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,

∵AF=x,

∴CH=x-4,

设AQ=z,PH=BQ=6-z,

∵PH∥EG,

∴,即,

化简得z=,

∴y=•x=-x1+x(4≤x≤10);

(1)y=-x1+x=-(x-)1+,

当x=dm时,y取最大值,最大值是dm1.【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.19、(1)见解析;(1)见解析.【解析】

(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.20、(1)补全统计图如图见解析;(2)“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.【解析】

(1)根据称职的人数及其所占百分比求得总人数,据此求得不称职、基本称职和优秀的百分比,再求出优秀的总人数,从而得出销售26万元的人数,据此即可补全图形.(2)根据中位数和众数的定义求解可得;(3)根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据.【详解】(1)依题可得:

“不称职”人数为:2+2=4(人),

“基本称职”人数为:2+3+3+2=10(人),

“称职”人数为:4+5+4+3+4=20(人),

∴总人数为:20÷50%=40(人),

∴不称职”百分比:a=4÷40=10%,

“基本称职”百分比:b=10÷40=25%,

“优秀”百分比:d=1-10%-25%-50%=15%,

∴“优秀”人数为:40×15%=6(人),

∴得26分的人数为:6-2-1-1=2(人),

补全统计图如图所示:

(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,

“优秀”25万2人,26万2人,27万1人,28万1人;

“称职”的销售员月销售额的中位数为:22万,众数:21万;

“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;

(3)由(2)知月销售额奖励标准应定为22万.

∵“称职”和“优秀”的销售员月销售额的中位数为:22万,

∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【点睛】考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题.21、(1)见解析;(2)见解析;(3).【解析】

(1)利用等腰三角形的性质,证明OC⊥AB即可;

(2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;

(3)根据勾股定理和三角函数解答即可.【详解】证明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切线.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD•EG=OG•EF.(3)∵AB=4BD,∴BC=2BD,设BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【点睛】考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.22、(1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答23、(1)DF=EF+BE.理由见解析;(2)CF=1.【解析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AEF≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论